In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    The role of the cytoskeleton in Alzheimer’s disease: a Drosophila perspective

    Howard, Daniel

    [Thesis]. Manchester, UK: The University of Manchester; 2016.

    Access to files

    Abstract

    Alzheimer’s disease (AD) pathogenesis is likely to be caused by dysfunction of two neuronal proteins, amyloid-beta (Aβ) and tau. Whilst excellent in vivo assays have been performed, and animal models which develop pathology which resembles AD have been generated, the cellular events that lead to neurodegeneration remain poorly understood, in particular those which involve the cytoskeleton. Microtubules (MTs) are vital for many axonal functions, including growth and transport. MTs have been implicated in neurodegeneration; 44% of cytoskeletal genes have OMIM links to human disorders, and over half of those disorders result in neuronal dysfunction. Aβ and tau are well understood biochemically, but the functional links between these proteins, and how they cause neurodegeneration, remain poorly understood. In the context of AD, Aβ and tau are known to have numerous toxic effects which could have extensive influence on the function of the cytoskeleton; a system which is essential in neurons. Here I utilise Drosophila primary neuron culture in order to determine the subcellular phenotypes associated with the application of Aβ via different genetic and artificial means, in concert with human tau (hTau), in a comparative analysis. I have demonstrated that fly neuron culture is suited in this capacity, and have demonstrated that different methods of Aβ and hTau application to neurons elicit different phenotypes, in particular regarding the timing and extent of MT disorganisation, and suggest that there may be qualitative reasons for the different phenotypes between the approaches taken.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Master of Philosophy
    Degree programme:
    MPhil Neuroscience
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    47
    Abstract:
    Alzheimer’s disease (AD) pathogenesis is likely to be caused by dysfunction of two neuronal proteins, amyloid-beta (Aβ) and tau. Whilst excellent in vivo assays have been performed, and animal models which develop pathology which resembles AD have been generated, the cellular events that lead to neurodegeneration remain poorly understood, in particular those which involve the cytoskeleton. Microtubules (MTs) are vital for many axonal functions, including growth and transport. MTs have been implicated in neurodegeneration; 44% of cytoskeletal genes have OMIM links to human disorders, and over half of those disorders result in neuronal dysfunction. Aβ and tau are well understood biochemically, but the functional links between these proteins, and how they cause neurodegeneration, remain poorly understood. In the context of AD, Aβ and tau are known to have numerous toxic effects which could have extensive influence on the function of the cytoskeleton; a system which is essential in neurons. Here I utilise Drosophila primary neuron culture in order to determine the subcellular phenotypes associated with the application of Aβ via different genetic and artificial means, in concert with human tau (hTau), in a comparative analysis. I have demonstrated that fly neuron culture is suited in this capacity, and have demonstrated that different methods of Aβ and hTau application to neurons elicit different phenotypes, in particular regarding the timing and extent of MT disorganisation, and suggest that there may be qualitative reasons for the different phenotypes between the approaches taken.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:300556
    Created by:
    Howard, Daniel
    Created:
    28th April, 2016, 21:28:54
    Last modified by:
    Howard, Daniel
    Last modified:
    7th September, 2016, 12:08:23

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.