In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

PAY-AS-YOU-GO INSTANCE-LEVEL INTEGRATION

Maskat, Ruhaila Binti

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

With the growing demand for information in various domains, sharing of information from heterogeneous data sources is now a necessity. Data integration approaches promise to combine data from these different sources and present to the user a single, unified view of these data. However, although these approaches offer high quality services for the managing and integrating of data, they come with a high cost. This is because a great amount of manual effort to form relationships across data sources is needed to set up the data integration system. A newer variant of data integration, known as dataspaces, aims to spread the large manual effort spent at the start of the data integration system to the rest of the system's phases. This is achieved by soliciting from the user their feedback on a chosen artefact of a dataspace, either by explicit ways or implicitly. This practice is known as pay-as-you-go, where a user continuously pays to the data integration system, by providing feedback, to gain improvements in the quality of data integration. This PhD addresses two challenges in data integration by using pay-as-you-go approaches. The first is to identify instances relevant to a user's information need, calling for semantic mappings to be closely considered. Our contribution is a technique that ranks mappings with the help of implicit user feedback (i.e., terms found in query logs). Our evaluation shows that to produce stable rankings, our technique does not require large-sized query logs, and that our generated ranking is able to respond satisfactorily to the amount of terms inclined towards a particular data source, where we describe it as skew. The second challenge that we address is the identification of duplicate instances from disparate data sources. We contribute a strategy that uses explicitly-obtained user feedback to drive an evolutionary search algorithm to find suitable parameters for an underlying clustering algorithm. Our experiments show that optimising the algorithm's parameters and introducing attribute weights produces fitter clusters than clustering alone. However, our strategy to improve on integration quality can be quite expensive. Therefore, we propose a pruning technique to select from a dataset any records that are informative. Our experiment shows that on most of the datasets, our pruner produce comparably fit clusters with more feedback received.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
166
Abstract:
With the growing demand for information in various domains, sharing of information from heterogeneous data sources is now a necessity. Data integration approaches promise to combine data from these different sources and present to the user a single, unified view of these data. However, although these approaches offer high quality services for the managing and integrating of data, they come with a high cost. This is because a great amount of manual effort to form relationships across data sources is needed to set up the data integration system. A newer variant of data integration, known as dataspaces, aims to spread the large manual effort spent at the start of the data integration system to the rest of the system's phases. This is achieved by soliciting from the user their feedback on a chosen artefact of a dataspace, either by explicit ways or implicitly. This practice is known as pay-as-you-go, where a user continuously pays to the data integration system, by providing feedback, to gain improvements in the quality of data integration. This PhD addresses two challenges in data integration by using pay-as-you-go approaches. The first is to identify instances relevant to a user's information need, calling for semantic mappings to be closely considered. Our contribution is a technique that ranks mappings with the help of implicit user feedback (i.e., terms found in query logs). Our evaluation shows that to produce stable rankings, our technique does not require large-sized query logs, and that our generated ranking is able to respond satisfactorily to the amount of terms inclined towards a particular data source, where we describe it as skew. The second challenge that we address is the identification of duplicate instances from disparate data sources. We contribute a strategy that uses explicitly-obtained user feedback to drive an evolutionary search algorithm to find suitable parameters for an underlying clustering algorithm. Our experiments show that optimising the algorithm's parameters and introducing attribute weights produces fitter clusters than clustering alone. However, our strategy to improve on integration quality can be quite expensive. Therefore, we propose a pruning technique to select from a dataset any records that are informative. Our experiment shows that on most of the datasets, our pruner produce comparably fit clusters with more feedback received.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:301126
Created by:
Maskat, Ruhaila
Created:
31st May, 2016, 16:24:18
Last modified by:
Maskat, Ruhaila
Last modified:
2nd June, 2017, 10:56:31

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.