In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      Simulation of Solar Powered Absorption Cooling System for Buildings in Pakistan

      Asim, Muhammad

      [Thesis]. Manchester, UK: The University of Manchester; 2016.

      Access to files

      Abstract

      This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climates;• Dynamic thermal simulation and weather data for solar energy systems and buildings.It was found that Pakistan is short of energy and that there is a great need to cool buildings. Renewable energy cooling systems are, therefore, of interest. The system described above was selected, as it was found that solar energy is abundant in Pakistan when cooling is required; thermal systems can be more economical than photovoltaics for hot climates and suitable components (collectors, absorption chillers, etc.) are commercially available. The TRNSYS dynamic thermal simulation program was selected as the main research tool, as it has been tested for solar energy and building applications by many researchers and suitable experimental facilities were not available.A simple typical building in Pakistan with a solar cooling system was simulated. Optimum values for key parameters were found by repeated simulations. It was concluded that the system would be able to provide cooling when required without an auxiliary heat source, and that an evacuated tube collector with a gross area of 12 m2, a collector flow rate of 165 kg/h, and a storage tank volume of 2 m3 would provide satisfactory performance for a 3.52 kW absorption chiller integrated with 42m3 single room. The results were in good agreement with published results from other researchers.Sensitivity analysis was carried out for the collector area, collector flow rate and storage tank size. It was found that varying the collector area had the largest effect on system performance, followed by varying the storage tank volume. Varying the collector flow rate had the smallest effect.It is recommended that solar cooling systems should be considered for Pakistan, and that further research should be carried out into reducing building cooling loads, using surplus heat for other loads, improving the performance of the proposed solar cooling system, and comparing it with other systems such as photovoltaics

      Layman's Abstract

      This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climates;• Dynamic thermal simulation and weather data for solar energy systems and buildings.It was found that Pakistan is short of energy and that there is a great need to cool buildings. Renewable energy cooling systems are, therefore, of interest. The system described above was selected, as it was found that solar energy is abundant in Pakistan when cooling is required; thermal systems can be more economical than photovoltaics for hot climates and suitable components (collectors, absorption chillers, etc.) are commercially available. The TRNSYS dynamic thermal simulation program was selected as the main research tool, as it has been tested for solar energy and building applications by many researchers and suitable experimental facilities were not available.A simple typical building in Pakistan with a solar cooling system was simulated. Optimum values for key parameters were found by repeated simulations. It was concluded that the system would be able to provide cooling when required without an auxiliary heat source, and that an evacuated tube collector with a gross area of 12 m2, a collector flow rate of 165 kg/h, and a storage tank volume of 2 m3 would provide satisfactory performance for a 3.52 kW absorption chiller integrated with 42m3 single room. The results were in good agreement with published results from other researchers.Sensitivity analysis was carried out for the collector area, collector flow rate and storage tank size. It was found that varying the collector area had the largest effect on system performance, followed by varying the storage tank volume. Varying the collector flow rate had the smallest effect.It is recommended that solar cooling systems should be considered for Pakistan, and that further research should be carried out into reducing building cooling loads, using surplus heat for other loads, improving the performance of the proposed solar cooling system, and comparing it with other systems such as photovoltaics

      Additional content not available electronically

      NA

      NA

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Mechanical Engineering
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      260
      Abstract:
      This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climates;• Dynamic thermal simulation and weather data for solar energy systems and buildings.It was found that Pakistan is short of energy and that there is a great need to cool buildings. Renewable energy cooling systems are, therefore, of interest. The system described above was selected, as it was found that solar energy is abundant in Pakistan when cooling is required; thermal systems can be more economical than photovoltaics for hot climates and suitable components (collectors, absorption chillers, etc.) are commercially available. The TRNSYS dynamic thermal simulation program was selected as the main research tool, as it has been tested for solar energy and building applications by many researchers and suitable experimental facilities were not available.A simple typical building in Pakistan with a solar cooling system was simulated. Optimum values for key parameters were found by repeated simulations. It was concluded that the system would be able to provide cooling when required without an auxiliary heat source, and that an evacuated tube collector with a gross area of 12 m2, a collector flow rate of 165 kg/h, and a storage tank volume of 2 m3 would provide satisfactory performance for a 3.52 kW absorption chiller integrated with 42m3 single room. The results were in good agreement with published results from other researchers.Sensitivity analysis was carried out for the collector area, collector flow rate and storage tank size. It was found that varying the collector area had the largest effect on system performance, followed by varying the storage tank volume. Varying the collector flow rate had the smallest effect.It is recommended that solar cooling systems should be considered for Pakistan, and that further research should be carried out into reducing building cooling loads, using surplus heat for other loads, improving the performance of the proposed solar cooling system, and comparing it with other systems such as photovoltaics
      Layman's abstract:
      This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climates;• Dynamic thermal simulation and weather data for solar energy systems and buildings.It was found that Pakistan is short of energy and that there is a great need to cool buildings. Renewable energy cooling systems are, therefore, of interest. The system described above was selected, as it was found that solar energy is abundant in Pakistan when cooling is required; thermal systems can be more economical than photovoltaics for hot climates and suitable components (collectors, absorption chillers, etc.) are commercially available. The TRNSYS dynamic thermal simulation program was selected as the main research tool, as it has been tested for solar energy and building applications by many researchers and suitable experimental facilities were not available.A simple typical building in Pakistan with a solar cooling system was simulated. Optimum values for key parameters were found by repeated simulations. It was concluded that the system would be able to provide cooling when required without an auxiliary heat source, and that an evacuated tube collector with a gross area of 12 m2, a collector flow rate of 165 kg/h, and a storage tank volume of 2 m3 would provide satisfactory performance for a 3.52 kW absorption chiller integrated with 42m3 single room. The results were in good agreement with published results from other researchers.Sensitivity analysis was carried out for the collector area, collector flow rate and storage tank size. It was found that varying the collector area had the largest effect on system performance, followed by varying the storage tank volume. Varying the collector flow rate had the smallest effect.It is recommended that solar cooling systems should be considered for Pakistan, and that further research should be carried out into reducing building cooling loads, using surplus heat for other loads, improving the performance of the proposed solar cooling system, and comparing it with other systems such as photovoltaics
      Additional digital content not deposited electronically:
      NA
      Non-digital content not deposited electronically:
      NA
      Thesis main supervisor(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:301368
        Created by:
        Asim, Muhammad
        Created:
        9th June, 2016, 11:22:58
        Last modified by:
        Asim, Muhammad
        Last modified:
        28th June, 2016, 13:39:01

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.