In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Discovery and Development of Class I Lyase-like Enzymes for Biotechnological Applications

Weise, Nicholas

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

This thesis reports the investigations of class I lyase-like enzymes with particular focus on aiding discovery of family members, and variants thereof, for biotechnological applications, such as biocatalytic synthesis of value-added compounds.Chapter 2 details computational investigations of class I lyase-like enzymes based on sequence and structural data. Using an initial set of structurally- and biochemically-characterised class I lyase like enzymes, patterns and relationships were identified and used to annotate publically-available sequences. This allowed the discovery of potential enzyme-coding genes for use in areas of biotechnology, e.g. as biotherapeutics for the treatment of cancer or as biocatalysts for the production of valuable unnatural amino acids. The search also aided elucidation of putative biosynthetic pathways, including one for a narrow spectrum antibiotic, and highlighted possible mechanisms of functional evolution within the family. In chapter 3 the characterisation and engineering of the bacterial ammonia lyase EncP for the production of (S)-β-amino acids is reported. This enzyme, although previously reported in the literature, had ever been investigated in a biocatalytic context. Creation of a biotransformation method allowed the broad substrate scope and clear enantiopreference of the enzyme to be uncovered. By combining electronic effects of substrates with structural inference, it was possible to create enzyme variants with shifted regioselectivity, including EncP-R299K - a biocatalyst catalysing the (S)-β-selective amination of a range of acrylic acids. This result is complementary to previous work as the (S)-β-products were not previously obtainable using already characterised ammonia lyase biocatalysts.Chapter 4 is about the use of another biocatalyst, AvPAL, to perform preparative scale synthesis of (S)-α-amino acids. Upon investigation of the substrate scope of this enzyme, imperfect enantio- and regioselectivity were uncovered. Further investigation of the product mixtures revealed that the enzyme had unreported mutase-like side activity, pointing to evolutionary mechanisms of functionalisation, as relating to chapter 2. Unfortunately engineering efforts to augment these activities were relatively unsuccessful. By choosing optimal substrates and reaction conditions, a biotransformation method was developed, allowing industrially relevant space time yields (up to 60 g L-1 d-1) to give crude isolated amino acids in sufficient purity.Chapter 5 provides further details on exact computational and experimental methods used throughout the investigations.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
179
Abstract:
This thesis reports the investigations of class I lyase-like enzymes with particular focus on aiding discovery of family members, and variants thereof, for biotechnological applications, such as biocatalytic synthesis of value-added compounds.Chapter 2 details computational investigations of class I lyase-like enzymes based on sequence and structural data. Using an initial set of structurally- and biochemically-characterised class I lyase like enzymes, patterns and relationships were identified and used to annotate publically-available sequences. This allowed the discovery of potential enzyme-coding genes for use in areas of biotechnology, e.g. as biotherapeutics for the treatment of cancer or as biocatalysts for the production of valuable unnatural amino acids. The search also aided elucidation of putative biosynthetic pathways, including one for a narrow spectrum antibiotic, and highlighted possible mechanisms of functional evolution within the family. In chapter 3 the characterisation and engineering of the bacterial ammonia lyase EncP for the production of (S)-β-amino acids is reported. This enzyme, although previously reported in the literature, had ever been investigated in a biocatalytic context. Creation of a biotransformation method allowed the broad substrate scope and clear enantiopreference of the enzyme to be uncovered. By combining electronic effects of substrates with structural inference, it was possible to create enzyme variants with shifted regioselectivity, including EncP-R299K - a biocatalyst catalysing the (S)-β-selective amination of a range of acrylic acids. This result is complementary to previous work as the (S)-β-products were not previously obtainable using already characterised ammonia lyase biocatalysts.Chapter 4 is about the use of another biocatalyst, AvPAL, to perform preparative scale synthesis of (S)-α-amino acids. Upon investigation of the substrate scope of this enzyme, imperfect enantio- and regioselectivity were uncovered. Further investigation of the product mixtures revealed that the enzyme had unreported mutase-like side activity, pointing to evolutionary mechanisms of functionalisation, as relating to chapter 2. Unfortunately engineering efforts to augment these activities were relatively unsuccessful. By choosing optimal substrates and reaction conditions, a biotransformation method was developed, allowing industrially relevant space time yields (up to 60 g L-1 d-1) to give crude isolated amino acids in sufficient purity.Chapter 5 provides further details on exact computational and experimental methods used throughout the investigations.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:301425
Created by:
Weise, Nicholas
Created:
13th June, 2016, 13:36:51
Last modified by:
Weise, Nicholas
Last modified:
3rd November, 2017, 11:15:41

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.