In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

N,N-diethyl-N’-naphthoylacylchalcogoureatometal (II)complexes as precursors for ternary metal chalcogenide thin films via AACVD.

Ezenwa, Emmanuel Tagbo

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

Emmanuel Tagbo EzenwaDoctor of Philosophy (PhD)N,N-diethyl–N’-naphthoylacylchalcogoureatometal(II)complexes as precursors for ternary metal chalcogenide thin film via AACVDAbstractIn this thesis complexes of acylchalcogoureas with cadmium (II), lead (II) and nickel (II) have been synthesised and investigated as single source precursors for the formation of metal chalcogenide thin films viaaerosol assisted chemical vapour deposition (AACVD). Routes to binary thin films have been explored using homoleptic complexes of the general structure bis(N,N-diethyl-N’-naphthoylchalcogoureato)metal(II). Analysis of the thin films produced showed the successful deposition of the binary materials from the synthesised complexes when characterised by powder XRD, ICP-OES, SEM and EDX.Routes to ternary thin films with the general structure MExE’1-x, where M represents a metal (Cd, Ni and Pb); and E chalcogen (S or Se) have been investigated using heteroleptic metal complexes of cadmium, nickel or lead including different chalcogen containing N,N-diethyl-N’-naphthoylchalcogoureato ligands and diethyldithiocarbamate. The precursors were fully characterised and novel compounds had their crystal structures determined. The heteroleptic complexes were thermolysed by AACVD forming the MExE’1-x thin films. In the cases of lead, nickel and cadmium the thin films produced showed that the composition of the film tended heavily towards the metal selenide.Ternary films of type MS1-xSex was prepared by mixing their binary precursors of type bis(N,N–diethyl-N’-naphthoylselenoureato)metal(II) and bis(N,N-diethyl-N’-naphthoylthioureato)metal(II) [metal = Cd, Ni and Pb]. In the case of lead and cadmium chalcogenide films variation of the ratio of sulphur and selenium containing precursors allowed for the full transition in composition between metal sulphide and metal selenide. In the case of CdS1-xSexthe band gap of the films was determined from UV-visible spectroscopy to vary from 2.4 eV (CdS) to 1.7 eV(CdSe). In the case of NiS1-xSex the movement from sulphide to selenide was less simple with multiple phases of nickel chalcogenides produced.

Additional content not available electronically

NMR DATA ON SAMPLES PREPARED AND ANALYSED IN THE PROGRAMME.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry
Publication date:
Location:
Manchester, UK
Total pages:
216
Abstract:
Emmanuel Tagbo EzenwaDoctor of Philosophy (PhD)N,N-diethyl–N’-naphthoylacylchalcogoureatometal(II)complexes as precursors for ternary metal chalcogenide thin film via AACVDAbstractIn this thesis complexes of acylchalcogoureas with cadmium (II), lead (II) and nickel (II) have been synthesised and investigated as single source precursors for the formation of metal chalcogenide thin films viaaerosol assisted chemical vapour deposition (AACVD). Routes to binary thin films have been explored using homoleptic complexes of the general structure bis(N,N-diethyl-N’-naphthoylchalcogoureato)metal(II). Analysis of the thin films produced showed the successful deposition of the binary materials from the synthesised complexes when characterised by powder XRD, ICP-OES, SEM and EDX.Routes to ternary thin films with the general structure MExE’1-x, where M represents a metal (Cd, Ni and Pb); and E chalcogen (S or Se) have been investigated using heteroleptic metal complexes of cadmium, nickel or lead including different chalcogen containing N,N-diethyl-N’-naphthoylchalcogoureato ligands and diethyldithiocarbamate. The precursors were fully characterised and novel compounds had their crystal structures determined. The heteroleptic complexes were thermolysed by AACVD forming the MExE’1-x thin films. In the cases of lead, nickel and cadmium the thin films produced showed that the composition of the film tended heavily towards the metal selenide.Ternary films of type MS1-xSex was prepared by mixing their binary precursors of type bis(N,N–diethyl-N’-naphthoylselenoureato)metal(II) and bis(N,N-diethyl-N’-naphthoylthioureato)metal(II) [metal = Cd, Ni and Pb]. In the case of lead and cadmium chalcogenide films variation of the ratio of sulphur and selenium containing precursors allowed for the full transition in composition between metal sulphide and metal selenide. In the case of CdS1-xSexthe band gap of the films was determined from UV-visible spectroscopy to vary from 2.4 eV (CdS) to 1.7 eV(CdSe). In the case of NiS1-xSex the movement from sulphide to selenide was less simple with multiple phases of nickel chalcogenides produced.
Additional digital content not deposited electronically:
NMR DATA ON SAMPLES PREPARED AND ANALYSED IN THE PROGRAMME.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:302608
Created by:
Ezenwa, Emmanuel
Created:
27th July, 2016, 11:19:52
Last modified by:
Ezenwa, Emmanuel
Last modified:
3rd November, 2017, 11:16:02

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.