In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Advanced electron microscopy techniques for mechanistic studies of the growth and transformation of nanocrystals

Lewis, Edward

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

The morphology, composition, and distribution of elements within nanocrystals are critical parameters which dictate the material’s properties and performance in a diverse array of emerging applications. The (scanning) transmission electron microscope ((S)TEM) represents a powerful tool for probing the structure and chemistry of materials on the nanoscale. Understanding of the mechanisms by which nanocrystals grow, transform, and degrade is vital if we are to develop rational synthesis routes and hence control the properties of the resulting materials. Electron microscopy represents a key tool in developing such an understanding. In situ techniques, where the material of interest is subjected to stimuli such as heat or a chemically reactive environment in the microscope, allow direct observation of dynamic transformations. Ex situ approaches, where multiple samples are prepared in the lab with the reaction parameters systematically altered, can also give important mechanistic insights. This thesis explores the use of both in situ and ex situ (S)TEM to gain insights into the growth and transformation of nanocrystals. Ex situ TEM is used to assess the structure of PbS nanocrystals in a polymer matrix, revealing new methods of morphological control through reaction temperature, precursor structures (appendix 4), and the processing of the polymer matrix (appendix 5). In situ techniques are used to observe the solution phase growth and shelling of nanocrystals (appendix 1) as well as the transformations of nanocrystals during heating in vacuum (appendices 2 and 3). The subjects of my in situ investigations are systems with heterogeneous distributions of elements. Historically, in situ electron microscope has been largely limited to imaging. However, to understand many dynamic transformations knowledge of changing elemental distributions is vital. For this reason, I have focused on the use of energy dispersive X-ray (EDX) spectroscopy to reveal changes in composition and elemental distributions during in situ experiments (appendices 1-3). This type of in situ elemental mapping is especially challenging for liquid-cell experiments, and my results represent the first report of EDX spectrum imaging for nanomaterials in liquid (appendix 1).

Additional content not available electronically

Accompanying videos for the manuscripts found in appendices 1 and 2 are available online and can be found using the digital object identifiers DOI:10.1039/C4CC02743D and DOI: 10.1039/C4NR04837G.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Nanoscience DTC
Publication date:
Location:
Manchester, UK
Total pages:
230
Abstract:
The morphology, composition, and distribution of elements within nanocrystals are critical parameters which dictate the material’s properties and performance in a diverse array of emerging applications. The (scanning) transmission electron microscope ((S)TEM) represents a powerful tool for probing the structure and chemistry of materials on the nanoscale. Understanding of the mechanisms by which nanocrystals grow, transform, and degrade is vital if we are to develop rational synthesis routes and hence control the properties of the resulting materials. Electron microscopy represents a key tool in developing such an understanding. In situ techniques, where the material of interest is subjected to stimuli such as heat or a chemically reactive environment in the microscope, allow direct observation of dynamic transformations. Ex situ approaches, where multiple samples are prepared in the lab with the reaction parameters systematically altered, can also give important mechanistic insights. This thesis explores the use of both in situ and ex situ (S)TEM to gain insights into the growth and transformation of nanocrystals. Ex situ TEM is used to assess the structure of PbS nanocrystals in a polymer matrix, revealing new methods of morphological control through reaction temperature, precursor structures (appendix 4), and the processing of the polymer matrix (appendix 5). In situ techniques are used to observe the solution phase growth and shelling of nanocrystals (appendix 1) as well as the transformations of nanocrystals during heating in vacuum (appendices 2 and 3). The subjects of my in situ investigations are systems with heterogeneous distributions of elements. Historically, in situ electron microscope has been largely limited to imaging. However, to understand many dynamic transformations knowledge of changing elemental distributions is vital. For this reason, I have focused on the use of energy dispersive X-ray (EDX) spectroscopy to reveal changes in composition and elemental distributions during in situ experiments (appendices 1-3). This type of in situ elemental mapping is especially challenging for liquid-cell experiments, and my results represent the first report of EDX spectrum imaging for nanomaterials in liquid (appendix 1).
Additional digital content not deposited electronically:
Accompanying videos for the manuscripts found in appendices 1 and 2 are available online and can be found using the digital object identifiers DOI:10.1039/C4CC02743D and DOI: 10.1039/C4NR04837G.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:303738
Created by:
Lewis, Edward
Created:
12th September, 2016, 19:36:44
Last modified by:
Lewis, Edward
Last modified:
3rd November, 2017, 11:16:28

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.