In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Investigations into the Physical Properties and Reactivity of Thorium(III) Complexes

Formanuik, Alasdair

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

Investigations into the Physical Properties and Reactivity of Thorium(III) Complexes: A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering.Since the first full structural characterisation of a thorium(III) complex 30 years ago, the chemistry of the highly reactive oxidation state has been largely neglected with respect to related uranium(III) chemistry. Despite the employment of nuclear technologies across the globe since the 1950’s, the relatively poor understanding of the actinides is somewhat surprising, in particular the models used to describe their bonding. Herein, this work presents an investigation into the reactivity of a thorium(III) complex, [Th(Cp'')3] (Cp'' = {C5H3(SiMe3)2-1,3}-); the synthesis and full characterisation of a new thorium(III) complex, [Th(Cptt)3] (Cptt = {C5H3(tBu)2-1,3}-); and the synthesis of two new hexadentate trisanilido ligands which are shown to stabilise uranium(III) and offer highly flexible coordination modes.All of the compounds presented were characterised via a range of analytical and spectroscopic techniques. [Th(Cptt)3] is shown to react with a series of small molecules, displaying elevated reactivity in the majority of cases to the similar uranium(III) complexes. In this work, [Th(Cptt)3] is shown to activate: P4, pyridine, 4,4′-bipyridine, Ph2CO, MeCN, CS2 and CO2, to form dimeric thorium(IV) complexes. The reactivity studies presented provide the first real measure of the reductive capability of the thorium(III) oxidation state.The first pulsed EPR spectroscopy experiments on actinide containing complexes are reported for a pair of new complexes, [M(Cptt)3] (M = U, Th), with the results allowing the direct calculation, via measurement of hyperfine coupling constants, of bonding between the actinide elements and the supporting ligand framework. The results indicate that comparative covalent character is found for the studied actinide complexes with the only other f-element complex characterised by this technique, [Yb(Cp)3], challenging conventional bonding models. Alasdair FormanuikAugust 2016

Keyword(s)

Organometallic; Thorium

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Nuclear Fission DTC
Publication date:
Location:
Manchester, UK
Total pages:
263
Abstract:
Investigations into the Physical Properties and Reactivity of Thorium(III) Complexes: A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering.Since the first full structural characterisation of a thorium(III) complex 30 years ago, the chemistry of the highly reactive oxidation state has been largely neglected with respect to related uranium(III) chemistry. Despite the employment of nuclear technologies across the globe since the 1950’s, the relatively poor understanding of the actinides is somewhat surprising, in particular the models used to describe their bonding. Herein, this work presents an investigation into the reactivity of a thorium(III) complex, [Th(Cp'')3] (Cp'' = {C5H3(SiMe3)2-1,3}-); the synthesis and full characterisation of a new thorium(III) complex, [Th(Cptt)3] (Cptt = {C5H3(tBu)2-1,3}-); and the synthesis of two new hexadentate trisanilido ligands which are shown to stabilise uranium(III) and offer highly flexible coordination modes.All of the compounds presented were characterised via a range of analytical and spectroscopic techniques. [Th(Cptt)3] is shown to react with a series of small molecules, displaying elevated reactivity in the majority of cases to the similar uranium(III) complexes. In this work, [Th(Cptt)3] is shown to activate: P4, pyridine, 4,4′-bipyridine, Ph2CO, MeCN, CS2 and CO2, to form dimeric thorium(IV) complexes. The reactivity studies presented provide the first real measure of the reductive capability of the thorium(III) oxidation state.The first pulsed EPR spectroscopy experiments on actinide containing complexes are reported for a pair of new complexes, [M(Cptt)3] (M = U, Th), with the results allowing the direct calculation, via measurement of hyperfine coupling constants, of bonding between the actinide elements and the supporting ligand framework. The results indicate that comparative covalent character is found for the studied actinide complexes with the only other f-element complex characterised by this technique, [Yb(Cp)3], challenging conventional bonding models. Alasdair FormanuikAugust 2016
Keyword(s):
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:304851
Created by:
Formanuik, Alasdair
Created:
29th September, 2016, 09:40:34
Last modified by:
Formanuik, Alasdair
Last modified:
6th October, 2017, 08:12:56

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.