In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      Infection by the gastrointestinal parasite Trichuris muris: Defining the microbiota of the parasite and the host

      White, Emily Claire

      [Thesis]. Manchester, UK: The University of Manchester; 2016.

      Access to files

      Abstract

      Intestinal dwelling parasites live in close association with the complex microbiota that inhabit our intestinal tracts. The intestinal helminth, Trichuris muris, depends on these bacteria for egg hatching and successful establishment of infection within the epithelium of the caecum and colon. Infection causes significant alterations to the host intestinal microbiota, including a decrease in bacterial diversity and shifts in proportions of certain bacterial groups. This is accompanied by a decrease in Foxp3+ regulatory T cells and changes to the metabolic potential of the host microbiota, consequently impacting host health. However, the factor(s) driving these changes and the existence and role of its own intestinal microbiota is unknown. Infection of C57BL/6 and immunodeficient SCID mice with a high dose (~ 200 embryonated eggs) and a low dose (~ 20 embryonated eggs) of T. muris was used to determine the impact of worm burden and the adaptive immune system on the host intestinal microbiota, in comparison to naïve controls. Microbiota analysis was performed by 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and Illumina sequencing. This revealed that infection-induced microbiota changes were dose dependent and high level infection caused an increase in the Bacteroidaceae and Enterobacteriaceae families, independently of the host adaptive immune system. Development of a surface sterilisation protocol enabled the internal T. muris microbiota to be analysed by 16S rRNA gene DGGE and fluorescence in situ hybridisation (FISH). The resulting data indicated that T. muris requires its own diverse intestinal microbiota that is derived from, but distinct to, that of its host. A core microbiota is selected and maintained by the parasite regardless of the surrounding host microbiota. The parasite microbiota is important for its fitness, shown in vitro using an antibiotic motility assay and in vivo using germ free (GF) mice. Furthermore, infection with T. muris causes a significant reduction in caecal butyrate concentrations and consequently a decrease in the expression of butyrate transporters in caecal tissue. Interestingly, the T. muris microbiota is able to produce the short-chain fatty acid (SCFA) butyrate, which the parasite is unable to make itself yet secretes into its local environment. Together these strategies promote the long term survival of T. muris within the intestinal niche, adding a new level of complexity to the interaction between the pathogen, the host and their respective microbiotas that underpins successful chronic nematode infection.

      Additional content not available electronically

      Supplementary tables A and B in appendices. Provided as a DVD.

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Microbiology 4yr (IIRM)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      197
      Abstract:
      Intestinal dwelling parasites live in close association with the complex microbiota that inhabit our intestinal tracts. The intestinal helminth, Trichuris muris, depends on these bacteria for egg hatching and successful establishment of infection within the epithelium of the caecum and colon. Infection causes significant alterations to the host intestinal microbiota, including a decrease in bacterial diversity and shifts in proportions of certain bacterial groups. This is accompanied by a decrease in Foxp3+ regulatory T cells and changes to the metabolic potential of the host microbiota, consequently impacting host health. However, the factor(s) driving these changes and the existence and role of its own intestinal microbiota is unknown. Infection of C57BL/6 and immunodeficient SCID mice with a high dose (~ 200 embryonated eggs) and a low dose (~ 20 embryonated eggs) of T. muris was used to determine the impact of worm burden and the adaptive immune system on the host intestinal microbiota, in comparison to naïve controls. Microbiota analysis was performed by 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and Illumina sequencing. This revealed that infection-induced microbiota changes were dose dependent and high level infection caused an increase in the Bacteroidaceae and Enterobacteriaceae families, independently of the host adaptive immune system. Development of a surface sterilisation protocol enabled the internal T. muris microbiota to be analysed by 16S rRNA gene DGGE and fluorescence in situ hybridisation (FISH). The resulting data indicated that T. muris requires its own diverse intestinal microbiota that is derived from, but distinct to, that of its host. A core microbiota is selected and maintained by the parasite regardless of the surrounding host microbiota. The parasite microbiota is important for its fitness, shown in vitro using an antibiotic motility assay and in vivo using germ free (GF) mice. Furthermore, infection with T. muris causes a significant reduction in caecal butyrate concentrations and consequently a decrease in the expression of butyrate transporters in caecal tissue. Interestingly, the T. muris microbiota is able to produce the short-chain fatty acid (SCFA) butyrate, which the parasite is unable to make itself yet secretes into its local environment. Together these strategies promote the long term survival of T. muris within the intestinal niche, adding a new level of complexity to the interaction between the pathogen, the host and their respective microbiotas that underpins successful chronic nematode infection.
      Additional digital content not deposited electronically:
      Supplementary tables A and B in appendices. Provided as a DVD.
      Thesis main supervisor(s):
      Thesis co-supervisor(s):
      Funder(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:305922
        Created by:
        White, Emily
        Created:
        1st December, 2016, 10:18:16
        Last modified by:
        White, Emily
        Last modified:
        6th January, 2017, 13:24:25

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.