In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Analysis and Metric Development for the Study of Viscoelastic Thin Films Utilising a Quartz Crystal Microbalance

Mcnamara, Thomas Patrick

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

The aim of this thesis is the creation of a set of tools for the quartz crystal microbalance (QCM-D) that aid in the measurement and quantification of soft viscoelastic thin films and experimental work demonstrating their use. The QCM-D is an acoustic technique that monitors structural changes occurring at the sensor’s surface via changes in the sensor’s resonance frequency and the rate of mechanical energy loss (dissipation). As a first approximation, the frequency shifts are used to measure mass changes on the sensor’s surface, and dissipation shifts used to quantify changes in the rigidity of the film. Use of the QCM-D responses in this manner requires that the film is acoustically thin and rigid, limiting its application to soft films.To quantify mass and viscoelastic changes using the QCM-D, soft films either need to be approximated to a thin, rigid layer, or the frequency and dissipation responses modelled using a viscoelastic model. Such an approximation leads to the encompassment of all the viscoelastic properties into the single dissipation measurement in addition to potentially introducing errors in mass calculations. Existing commercial software allows for the deconvolution of film parameters such as the shear modulus and viscosity by fitting experimental data to a viscoelastic model. This analysis can only be done after the experimental data is collected however, and provides no guidance on future experiments, also commonly requiring an initial estimate of the parameter values under investigation.I have developed an experimental optimisation tool, termed the total parameter matrix sensitivity (TPM-sensitivity). It is defined as the Jacobian determinant of the QCM-D responses with respect to the parameters under investigation, e.g. the film’s height, density, viscosity and shear modulus and the bulk fluid’s density and viscosity. TPM-sensitivity is a measure of how readily resolvable and separable the film and bulk are when analysing the QCM-D responses. This enables the user to select the most mathematically important harmonics, and using this I was able to experimentally resolve the viscoelastic information of a soft film using frequency responses alone.I have also defined a classification system which categorises the QCM-D responses relative to a perfectly rigid and thin film. This provides guidance on the level of analysis required to gain information about the film parameters, with the limitations of commonly applied rules of thumb also demonstrated. Examples using these computational tools and metrics are also presented with data I obtained experimentally and from the literature. Of the experimental investigations, the curing process of a bulk elastomer is of particular importance due to the film being both soft and acoustically thick, demonstrating QCM-D use for a film not complying to either of thecommonly used film approximations.

Additional content not available electronically

Software generated to aid QCM-D users can be found at https://github.com/88tpm/QCMD and downloaded.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials (42 months)
Publication date:
Location:
Manchester, UK
Total pages:
207
Abstract:
The aim of this thesis is the creation of a set of tools for the quartz crystal microbalance (QCM-D) that aid in the measurement and quantification of soft viscoelastic thin films and experimental work demonstrating their use. The QCM-D is an acoustic technique that monitors structural changes occurring at the sensor’s surface via changes in the sensor’s resonance frequency and the rate of mechanical energy loss (dissipation). As a first approximation, the frequency shifts are used to measure mass changes on the sensor’s surface, and dissipation shifts used to quantify changes in the rigidity of the film. Use of the QCM-D responses in this manner requires that the film is acoustically thin and rigid, limiting its application to soft films.To quantify mass and viscoelastic changes using the QCM-D, soft films either need to be approximated to a thin, rigid layer, or the frequency and dissipation responses modelled using a viscoelastic model. Such an approximation leads to the encompassment of all the viscoelastic properties into the single dissipation measurement in addition to potentially introducing errors in mass calculations. Existing commercial software allows for the deconvolution of film parameters such as the shear modulus and viscosity by fitting experimental data to a viscoelastic model. This analysis can only be done after the experimental data is collected however, and provides no guidance on future experiments, also commonly requiring an initial estimate of the parameter values under investigation.I have developed an experimental optimisation tool, termed the total parameter matrix sensitivity (TPM-sensitivity). It is defined as the Jacobian determinant of the QCM-D responses with respect to the parameters under investigation, e.g. the film’s height, density, viscosity and shear modulus and the bulk fluid’s density and viscosity. TPM-sensitivity is a measure of how readily resolvable and separable the film and bulk are when analysing the QCM-D responses. This enables the user to select the most mathematically important harmonics, and using this I was able to experimentally resolve the viscoelastic information of a soft film using frequency responses alone.I have also defined a classification system which categorises the QCM-D responses relative to a perfectly rigid and thin film. This provides guidance on the level of analysis required to gain information about the film parameters, with the limitations of commonly applied rules of thumb also demonstrated. Examples using these computational tools and metrics are also presented with data I obtained experimentally and from the literature. Of the experimental investigations, the curing process of a bulk elastomer is of particular importance due to the film being both soft and acoustically thick, demonstrating QCM-D use for a film not complying to either of thecommonly used film approximations.
Additional digital content not deposited electronically:
Software generated to aid QCM-D users can be found at https://github.com/88tpm/QCMD and downloaded.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:305960
Created by:
Mcnamara, Thomas
Created:
2nd December, 2016, 13:56:26
Last modified by:
Mcnamara, Thomas
Last modified:
3rd November, 2017, 11:16:47

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.