In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Quantitative Accuracy of Iterative Reconstruction Algorithms in Positron Emission Tomography

Armstrong, Ian

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

Positron Emission Tomography (PET) plays an essential role in the management of patients with cancer. It is used to detect and characterise malignancy as well as monitor response to therapy. PET is a quantitative imaging tool, producing images that quantify the uptake of a radiotracer that has been administered to the patient. The most common measure of uptake derived from the image is known as a Standardised Uptake Value (SUV). Data acquired on the scanner is processed to produce images that are reported by clinicians. This task is known as image reconstruction and uses computational algorithms to process the scan data. The last decade has seen substantial development of these algorithms, which have become commercially available: modelling of the scanner spatial resolution (resolution modelling) and time of flight (TOF). The Biograph mCT was the first scanner from Siemens Healthcare to feature these two algorithms and the scanner at Central Manchester University Hospitals was the first Biograph mCT to go live in the UK. This PhD project, sponsored by Siemens Healthcare, aims to evaluate the effect of these algorithms on SUV in routine oncology imaging through a combination of phantom and patient studies.Resolution modelling improved visualisation of small objects and resulted in significant increases of uptake measurements. This may pose a challenge to clinicians when interpreting established uptake metrics that are used as an indication of disease status. Resolution modelling reduced the variability of SUV. This improved precision is particularly beneficial when assessing SUV changes during therapy monitoring.TOF was shown to reduce image noise with a conservation of FDG uptake measurements, relative to non-TOF algorithms. As a result of this work, TOF has been used routinely since mid-2014 at the CMUH department. This has facilitated a reduction of patient and staff radiation dose and an increase of 100 scans performed each year in the department.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Medicine 6yr IIDS
Publication date:
Location:
Manchester, UK
Total pages:
192
Abstract:
Positron Emission Tomography (PET) plays an essential role in the management of patients with cancer. It is used to detect and characterise malignancy as well as monitor response to therapy. PET is a quantitative imaging tool, producing images that quantify the uptake of a radiotracer that has been administered to the patient. The most common measure of uptake derived from the image is known as a Standardised Uptake Value (SUV). Data acquired on the scanner is processed to produce images that are reported by clinicians. This task is known as image reconstruction and uses computational algorithms to process the scan data. The last decade has seen substantial development of these algorithms, which have become commercially available: modelling of the scanner spatial resolution (resolution modelling) and time of flight (TOF). The Biograph mCT was the first scanner from Siemens Healthcare to feature these two algorithms and the scanner at Central Manchester University Hospitals was the first Biograph mCT to go live in the UK. This PhD project, sponsored by Siemens Healthcare, aims to evaluate the effect of these algorithms on SUV in routine oncology imaging through a combination of phantom and patient studies.Resolution modelling improved visualisation of small objects and resulted in significant increases of uptake measurements. This may pose a challenge to clinicians when interpreting established uptake metrics that are used as an indication of disease status. Resolution modelling reduced the variability of SUV. This improved precision is particularly beneficial when assessing SUV changes during therapy monitoring.TOF was shown to reduce image noise with a conservation of FDG uptake measurements, relative to non-TOF algorithms. As a result of this work, TOF has been used routinely since mid-2014 at the CMUH department. This has facilitated a reduction of patient and staff radiation dose and an increase of 100 scans performed each year in the department.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:306784
Created by:
Armstrong, Ian
Created:
9th January, 2017, 14:00:53
Last modified by:
Armstrong, Ian
Last modified:
3rd February, 2017, 10:53:45

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.