In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Simulation, Fabrication and Measurement of Graphene Based Passive Guided Devices

Zhang, Xiao

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

Motivated by the few work has done on the performance measurement of graphene passive devices compared to graphene active devices, several different types of passive devices are fabricated and measured. In general, the fabricated devices are divided into two parts: the DC devices and the RF devices, which based on the different electrical properties we measure in Chapter 7.For the DC devices, attention has been given to the resistance of CVD graphene that we later use in all the RF devices. The Dirac point seems only appears in the exfoliated graphene measurement, which is caused by the doping concentration difference between the exfoliated and CVD graphene. Meanwhile, the sheet resistance of graphene is calculated based on the four-point measurement. The sheet resistance of CVD graphene is around 291 Ω/sqFor the RF devices, the measurement is conducted on the two types of graphene passive devices from 0-110 GHz. The first type of graphene devices is the graphene CPW resonator. We measure the input impedances of the graphene resonators on different substrates (Si/SiO2 and GaAs) and with different graphene lengths (440 μm, 500 μm and 1415 μm). For the graphene resonators on Si/SiO2 substrate, the input impedance does show the resonance shift compared to the graphene-removed structure. The frequency position of the resonance that appears is consistent with the theoretical calculation result. Besides, the influence of the external conditions such as temperature on the performance of graphene resonators has been investigated. The input impedance resonance shows the shift when the external temperature varying from 40o C(313K) to 160o C (433K). This measurement is undertaken with the graphene resonator on GaAs substrate.The second type of graphene devices is the graphene CPW transmission line on Si/SiO2 substrate. The S-parameters measured from VNA reveal that graphene within the transmission line acts as the transmission channel, which is a little lossy at the microwave frequency range. The poor transmission is also partially caused by the mismatching of the parasitic impedance, as well as the substrate loss, which is verified by the comparison result between the graphene transmission line and the graphene-removed transmission line. Similarly, the concern on the signal line coupling is also eliminated by using the graphene-removed structure.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
130
Abstract:
Motivated by the few work has done on the performance measurement of graphene passive devices compared to graphene active devices, several different types of passive devices are fabricated and measured. In general, the fabricated devices are divided into two parts: the DC devices and the RF devices, which based on the different electrical properties we measure in Chapter 7.For the DC devices, attention has been given to the resistance of CVD graphene that we later use in all the RF devices. The Dirac point seems only appears in the exfoliated graphene measurement, which is caused by the doping concentration difference between the exfoliated and CVD graphene. Meanwhile, the sheet resistance of graphene is calculated based on the four-point measurement. The sheet resistance of CVD graphene is around 291 Ω/sqFor the RF devices, the measurement is conducted on the two types of graphene passive devices from 0-110 GHz. The first type of graphene devices is the graphene CPW resonator. We measure the input impedances of the graphene resonators on different substrates (Si/SiO2 and GaAs) and with different graphene lengths (440 μm, 500 μm and 1415 μm). For the graphene resonators on Si/SiO2 substrate, the input impedance does show the resonance shift compared to the graphene-removed structure. The frequency position of the resonance that appears is consistent with the theoretical calculation result. Besides, the influence of the external conditions such as temperature on the performance of graphene resonators has been investigated. The input impedance resonance shows the shift when the external temperature varying from 40o C(313K) to 160o C (433K). This measurement is undertaken with the graphene resonator on GaAs substrate.The second type of graphene devices is the graphene CPW transmission line on Si/SiO2 substrate. The S-parameters measured from VNA reveal that graphene within the transmission line acts as the transmission channel, which is a little lossy at the microwave frequency range. The poor transmission is also partially caused by the mismatching of the parasitic impedance, as well as the substrate loss, which is verified by the comparison result between the graphene transmission line and the graphene-removed transmission line. Similarly, the concern on the signal line coupling is also eliminated by using the graphene-removed structure.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:306885
Created by:
Zhang, Xiao
Created:
13th January, 2017, 14:23:00
Last modified by:
Zhang, Xiao
Last modified:
3rd November, 2017, 11:17:22

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.