In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Microstructure Characterization and Corrosion Properties of Two Recycled Aluminium Alloys AA5050 and AA6011

Jordan, Aaron

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

The influence of recycling on aluminium alloys and subsequent influence on the microstructure and corrosion performances have been investigated. The investigation was commenced by taking two block cast, recycled aluminium alloys (AA5050 and AA6011) and rolling them into 1mm gauge plate. In the case of AA6011, the plate was subjected to subsequent solution heat treatment and artificial aging steps, in order to attain certain temper specifications. To replicate the automotive paint bake industrial practice, a sample was subjected to a 2% tensile stretch followed by heat treatment for 30 minutes at 180˚C. Microstructural observations revealed Al-Fe-Mn-Si intermetallics to be the dominant secondary phase in both alloys. The size, distribution and composition of these were unaffected by artificial aging. Mg2Si was found in a coarse, localised form in both alloys also, albeit in much less amounts in AA5050. The presence of this phase was likely due to poor homogenisation during thermomechanical processing. HR-TEM of AA6011 revealed needle/rod shaped precipitates, aligning in the [001]Al lattice direction. This is consistent with β’’/β’ hardening precipitates consisting of magnesium and silicon. Circumstantial evidence was found for the copper-containing Q phase precipitate also. An additional, unidentified precipitate was observed, nucleating on the {111} habit plane of the aluminium matrix. The high iron content of AA6011 retarded the precipitation hardening response by capturing elements associated with hardening precipitates in the Al-Fe-Mn-Si intermetallics. Electrochemical corrosion experiments revealed the materials had a high susceptibility to localised corrosions, with the open circuit potential and breakdown potential possessing similar values. Atmospheric corrosion experiments showed that artificial aging had a large influence on the preferred corrosion mechanism. Non-heat treated samples showed susceptibility for pitting corrosion. This was particularly true for the –T4P temper, which showed large scale pitting. Heat treated samples saw an introduced susceptibility to intergranular corrosion. This was attributed to precipitation at grain boundaries, which would then form a microgalvanic couple with adjacent depleted zones. In the case of the –T8P temper, tensile stretching introduced defects into the sub-grain microstructure. This resulted in intergranular corrosion fronts of increased width, where grains with higher stored energy undergo preferential dissolution alongside the grain boundary attack. Overall, the detrimental effects of high iron content need to be overcome before AA5050 and AA6011 can be seriously considered for use in the automotive industry. However, the corrosion performance of AA6011–T8P is encouraging.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials (42 months)
Publication date:
Location:
Manchester, UK
Total pages:
248
Abstract:
The influence of recycling on aluminium alloys and subsequent influence on the microstructure and corrosion performances have been investigated. The investigation was commenced by taking two block cast, recycled aluminium alloys (AA5050 and AA6011) and rolling them into 1mm gauge plate. In the case of AA6011, the plate was subjected to subsequent solution heat treatment and artificial aging steps, in order to attain certain temper specifications. To replicate the automotive paint bake industrial practice, a sample was subjected to a 2% tensile stretch followed by heat treatment for 30 minutes at 180˚C. Microstructural observations revealed Al-Fe-Mn-Si intermetallics to be the dominant secondary phase in both alloys. The size, distribution and composition of these were unaffected by artificial aging. Mg2Si was found in a coarse, localised form in both alloys also, albeit in much less amounts in AA5050. The presence of this phase was likely due to poor homogenisation during thermomechanical processing. HR-TEM of AA6011 revealed needle/rod shaped precipitates, aligning in the [001]Al lattice direction. This is consistent with β’’/β’ hardening precipitates consisting of magnesium and silicon. Circumstantial evidence was found for the copper-containing Q phase precipitate also. An additional, unidentified precipitate was observed, nucleating on the {111} habit plane of the aluminium matrix. The high iron content of AA6011 retarded the precipitation hardening response by capturing elements associated with hardening precipitates in the Al-Fe-Mn-Si intermetallics. Electrochemical corrosion experiments revealed the materials had a high susceptibility to localised corrosions, with the open circuit potential and breakdown potential possessing similar values. Atmospheric corrosion experiments showed that artificial aging had a large influence on the preferred corrosion mechanism. Non-heat treated samples showed susceptibility for pitting corrosion. This was particularly true for the –T4P temper, which showed large scale pitting. Heat treated samples saw an introduced susceptibility to intergranular corrosion. This was attributed to precipitation at grain boundaries, which would then form a microgalvanic couple with adjacent depleted zones. In the case of the –T8P temper, tensile stretching introduced defects into the sub-grain microstructure. This resulted in intergranular corrosion fronts of increased width, where grains with higher stored energy undergo preferential dissolution alongside the grain boundary attack. Overall, the detrimental effects of high iron content need to be overcome before AA5050 and AA6011 can be seriously considered for use in the automotive industry. However, the corrosion performance of AA6011–T8P is encouraging.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:307827
Created by:
Jordan, Aaron
Created:
3rd March, 2017, 12:53:37
Last modified by:
Jordan, Aaron
Last modified:
3rd November, 2017, 11:18:16

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.