In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Phosphonated Polymers for Nanofibrous Tissue Scaffolds

Youle, Peter

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

This thesis, entitled “Phosphonated polymers for nanofibrous tissue scaffolds”, was written by Peter James Youle at the University of Manchester for the degree of Doctor of Philosophy and was submitted in 2016. The work contained within concerns itself with the synthesis and characterisation of phosphonated polymers intended for application as nanofibrous tissue scaffolds for improving the healing of bone; it is based on previous work performed in the University of Manchester that identified poly(ε-caprolactone) (PCL) nanofibres coated with poly(vinylphosphonic acid-co-acrylic acid) (PVPA-co-AA) as a promising material for enhancing bone healing. This thesis initially focuses on the characterisation of a commercially sourced PVPA-co-AA by defining its composition and molar mass using quantitative 31P NMR and aqueous gel permeation chromatography. A method of synthesising the copolymer by free radical polymerization, with controlled rates of monomer addition, was developed to produce PVPA-co-AA copolymers with a range of compositions. Additionally, nanofibres of PVPA-co-AA were then formed by electrospinning and crosslinked with ethylene glycol; the subsequent nanofibres were found to be water stable and retain their structure after hydration and subsequent drying. A block copolymer, polycaprolactone-b-poly(acrylic acid) (PCL-b-PAA), was synthesised by four-step ATRP and two-step NMP based approaches, with the block character of the resulting copolymer being demonstrated by GPC and dynamic light scattering. The PCL-b-PAA was subsequently used as a compatibiliser for PCL and PVPA-co-AA emulsions, which were used to create composite nanofibres by electrospinning. These nanofibre were in turn characterized by scanning electron microscopy and compared to nanofibres formed using a surfactant, Span® 80, and the original dip-coated nanofibres. Finally, a small portion of work was undertaken to develop phosphonated PCL analogues, by attempting to synthesise phosphonated ε-caprolactone monomers.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Nanoscience DTC
Publication date:
Location:
Manchester, UK
Total pages:
178
Abstract:
This thesis, entitled “Phosphonated polymers for nanofibrous tissue scaffolds”, was written by Peter James Youle at the University of Manchester for the degree of Doctor of Philosophy and was submitted in 2016. The work contained within concerns itself with the synthesis and characterisation of phosphonated polymers intended for application as nanofibrous tissue scaffolds for improving the healing of bone; it is based on previous work performed in the University of Manchester that identified poly(ε-caprolactone) (PCL) nanofibres coated with poly(vinylphosphonic acid-co-acrylic acid) (PVPA-co-AA) as a promising material for enhancing bone healing. This thesis initially focuses on the characterisation of a commercially sourced PVPA-co-AA by defining its composition and molar mass using quantitative 31P NMR and aqueous gel permeation chromatography. A method of synthesising the copolymer by free radical polymerization, with controlled rates of monomer addition, was developed to produce PVPA-co-AA copolymers with a range of compositions. Additionally, nanofibres of PVPA-co-AA were then formed by electrospinning and crosslinked with ethylene glycol; the subsequent nanofibres were found to be water stable and retain their structure after hydration and subsequent drying. A block copolymer, polycaprolactone-b-poly(acrylic acid) (PCL-b-PAA), was synthesised by four-step ATRP and two-step NMP based approaches, with the block character of the resulting copolymer being demonstrated by GPC and dynamic light scattering. The PCL-b-PAA was subsequently used as a compatibiliser for PCL and PVPA-co-AA emulsions, which were used to create composite nanofibres by electrospinning. These nanofibre were in turn characterized by scanning electron microscopy and compared to nanofibres formed using a surfactant, Span® 80, and the original dip-coated nanofibres. Finally, a small portion of work was undertaken to develop phosphonated PCL analogues, by attempting to synthesise phosphonated ε-caprolactone monomers.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:307927
Created by:
Youle, Peter
Created:
6th March, 2017, 21:41:12
Last modified by:
Youle, Peter
Last modified:
5th May, 2017, 12:04:44

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.