In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Inhibition of mild steel corrosion in cooling systems by low- and non-toxic corrosion inhibitors

Ahmed, Mohamed Ali

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

AbstractThe aim of the research in this thesis was to study how environmentally friendly corrosion inhibitors for cooling water systems might be developed and used. Firstly, reduced toxicity inorganic corrosion inhibitors (i.e. nitrite/molybdate) were considered. Secondly, non-toxic inhibitors based on mono and di-basic salts of carboxylic acids were studied systematically as a function of carbon chain length. For nitrite inhibitor alone, a concentration of 7 mM NaNO2 was effective to inhibit carbon steel in chloride media of 10 mM NaCl, while 10 mM nitrite was needed in sulphate media of 3.66 mM Na2SO4. However, it was found possible to significantly reduce the concentration of nitrite by adding molybdate in synergy. This was attributed to the nitrite passivation combined with ferrous molybdate salt film pore plugging thus promoting a continuous and protective film on the material within these media. Thus, in pH 6-10 an inhibition efficiency of 97% was recorded with a mixture of 3 mM nitrite/2 mM molybdate in both chloride and sulphate media and at 25°C and 60°C. However as the solution pH decreased below pH 4 the inhibition efficiency decreased to about 47%.In the second part of the study, the use of sodium salts of carboxylic acids with different chain lengths has been investigated. In this part a summary of the performances and limitations of both mono- and di-sodium carboxylate inhibitors are presented. For mono-carboxylates, the inhibition efficiency reached a maximum value of 95% in stagnant aerated solutions at a chain length of C=4 with a critical inhibition concentration of 6 mM in 10 mM NaCl solution. However the inhibition efficiency gradually decreased as the number of carbon atoms in the chain length increased to more than 8, or less than 4, and this was in agreement with surface hydrophobicity and contact angle results. For lower chain lengths, the carboxylate anion becomes more acidic and complexing of the metal ion while for longer chain lengths, the carboxylate anion becomes less soluble and tends to micellise wherby the active groups are no longer available for surface adsorption.For di-carboxylates the inhibition efficiency improved in 10 mM NaCl at a given chain length compared with mono-carboxylates, and continued to increase to C=8 (sebacate), which achieved excellent inhibition efficiency. However, sebacate is costly so a blend with ethyl hexanoate was found to be economically favoured.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials
Publication date:
Location:
Manchester, UK
Total pages:
274
Abstract:
AbstractThe aim of the research in this thesis was to study how environmentally friendly corrosion inhibitors for cooling water systems might be developed and used. Firstly, reduced toxicity inorganic corrosion inhibitors (i.e. nitrite/molybdate) were considered. Secondly, non-toxic inhibitors based on mono and di-basic salts of carboxylic acids were studied systematically as a function of carbon chain length. For nitrite inhibitor alone, a concentration of 7 mM NaNO2 was effective to inhibit carbon steel in chloride media of 10 mM NaCl, while 10 mM nitrite was needed in sulphate media of 3.66 mM Na2SO4. However, it was found possible to significantly reduce the concentration of nitrite by adding molybdate in synergy. This was attributed to the nitrite passivation combined with ferrous molybdate salt film pore plugging thus promoting a continuous and protective film on the material within these media. Thus, in pH 6-10 an inhibition efficiency of 97% was recorded with a mixture of 3 mM nitrite/2 mM molybdate in both chloride and sulphate media and at 25°C and 60°C. However as the solution pH decreased below pH 4 the inhibition efficiency decreased to about 47%.In the second part of the study, the use of sodium salts of carboxylic acids with different chain lengths has been investigated. In this part a summary of the performances and limitations of both mono- and di-sodium carboxylate inhibitors are presented. For mono-carboxylates, the inhibition efficiency reached a maximum value of 95% in stagnant aerated solutions at a chain length of C=4 with a critical inhibition concentration of 6 mM in 10 mM NaCl solution. However the inhibition efficiency gradually decreased as the number of carbon atoms in the chain length increased to more than 8, or less than 4, and this was in agreement with surface hydrophobicity and contact angle results. For lower chain lengths, the carboxylate anion becomes more acidic and complexing of the metal ion while for longer chain lengths, the carboxylate anion becomes less soluble and tends to micellise wherby the active groups are no longer available for surface adsorption.For di-carboxylates the inhibition efficiency improved in 10 mM NaCl at a given chain length compared with mono-carboxylates, and continued to increase to C=8 (sebacate), which achieved excellent inhibition efficiency. However, sebacate is costly so a blend with ethyl hexanoate was found to be economically favoured.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:308021
Created by:
Ahmed, Mohamed
Created:
13th March, 2017, 23:56:37
Last modified by:
Ahmed, Mohamed
Last modified:
3rd November, 2017, 11:18:25

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.