In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Techno-Economic and Environmental Assessment of a Smart Multi-Energy Grid

Zhang, Lingxi

[Thesis]. Manchester, UK: The University of Manchester; 2017.

Access to files

Abstract

This PhD thesis proposes a bottom-up approach that accurately addresses the operational flexibility embedded in each part of a multi-energy system (MES). Several models which cover the simulations from replicating domestic electrified demands to power system scheduling are proposed. More specifically, a domes-tic multi-energy consumption model is firstly developed to simulate one minute resolution energy profiles of individual dwellings with the installation of prospec-tive technologies (i.e., electric heat pumps (EHPs), electric vehicles (EVs)). After-wards, a fast linear programming (LP) unit commitment (UC) model is devel-oped with the consideration of characteristics of generators and a full set of ancil-lary services (i.e., frequency response and reserves). More importantly, the fre-quency response requirements in low inertia systems are assessed with the con-sideration of three grid frequency regulations (i.e., rate of change of frequency, Nadir and quasi-steady state). Furthermore, the UC model has integrated vari-ous flexibility contributors in MES to provide ancillary and flexibility services, which include pumped hydro storages (PHSs), interconnectors, batteries and demand side resources (i.e., individual EHPs, heat networks, electrolysers). More importantly, the fast frequency response (FFR) provision from nonsynchronous resources is implemented and the demand response application of electrolysers is taken as an example to provide FFR in the UC model. By using the integrated UC model with the consideration of flexibility services provided by resources in the MES, the advantages of multi-energy operation can be clearly identified which can be used to inform system operators and policy makers to design and operate energy systems in a more economic and environment-friendly way.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
331
Abstract:
This PhD thesis proposes a bottom-up approach that accurately addresses the operational flexibility embedded in each part of a multi-energy system (MES). Several models which cover the simulations from replicating domestic electrified demands to power system scheduling are proposed. More specifically, a domes-tic multi-energy consumption model is firstly developed to simulate one minute resolution energy profiles of individual dwellings with the installation of prospec-tive technologies (i.e., electric heat pumps (EHPs), electric vehicles (EVs)). After-wards, a fast linear programming (LP) unit commitment (UC) model is devel-oped with the consideration of characteristics of generators and a full set of ancil-lary services (i.e., frequency response and reserves). More importantly, the fre-quency response requirements in low inertia systems are assessed with the con-sideration of three grid frequency regulations (i.e., rate of change of frequency, Nadir and quasi-steady state). Furthermore, the UC model has integrated vari-ous flexibility contributors in MES to provide ancillary and flexibility services, which include pumped hydro storages (PHSs), interconnectors, batteries and demand side resources (i.e., individual EHPs, heat networks, electrolysers). More importantly, the fast frequency response (FFR) provision from nonsynchronous resources is implemented and the demand response application of electrolysers is taken as an example to provide FFR in the UC model. By using the integrated UC model with the consideration of flexibility services provided by resources in the MES, the advantages of multi-energy operation can be clearly identified which can be used to inform system operators and policy makers to design and operate energy systems in a more economic and environment-friendly way.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:312643
Created by:
Zhang, Lingxi
Created:
19th December, 2017, 09:53:45
Last modified by:
Zhang, Lingxi
Last modified:
3rd January, 2019, 13:53:15

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.