In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

CHEMICAL VAPOUR DEPOSITION OF GRAPHENE ON COPPER-NICKEL ALLOY

Al-Hilfi, Samir

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

Among all the methods of produce graphene, chemical vapour deposition (CVD) is the most promising route, due to the high quality of the graphene film produced and the large scalability. The mechanism of graphene growth by CVD on a metal substrate is believed to be controlled by its solubility for carbon with precipitation dominant at high carbon solubility and surface diffusion at low solubility. This thesis is exploring the impact of C solubility in the catalytic substrates, on the CVD growth of graphene. Cu-Ni alloys show complete solid solubility across their composition range and can be used to explore the influence of C solubility on graphene growth. Graphene is grown on Cu-Ni alloys of composition Cu, Cu70-Ni30, Cu55-Ni45, Cu33-Ni67 and Ni in a hot-wall CVD reactor. Firstly, the growth was achieved on pure metals (Cu and Ni) using CH4 as a C source and the produced film was characterised by Raman spectroscopy and scanning electron microscopy (SEM). The C profile within the substrate bulk was measured by glow discharge optical emission stereoscopy (GDOES). The latter showed the difference in bulk C content between Cu and Ni, which reflects the influence on the graphitic film on the surface. The CVD growth of graphene on Cu-Ni alloy showed a transition from bilayer graphene (BLG) to few layer graphene (FLG) surface coverage when the Ni content increased, which is accompanied by an increase in the diffusion of C in the bulk and incubation time. The cooling rate showed a significant effect on the graphene surface coverage; however, the influence varied with Ni content. The fluid flow simulation indicated that the gas velocity beneath the substrate is very low which results in a lower mass transfer to the bottom substrate surface. Gas-phase kinetics simulation reveals the impact of gas residence time on the concentration of active species; moreover, the concentration increases down the stream of the flowing gas. Finally, the surface reactions of the CH4/H2 mixture model showed a good agreement with the experimental observations under low growth pressure; however, it failed at high growth pressure.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials
Publication date:
Location:
Manchester, UK
Total pages:
171
Abstract:
Among all the methods of produce graphene, chemical vapour deposition (CVD) is the most promising route, due to the high quality of the graphene film produced and the large scalability. The mechanism of graphene growth by CVD on a metal substrate is believed to be controlled by its solubility for carbon with precipitation dominant at high carbon solubility and surface diffusion at low solubility. This thesis is exploring the impact of C solubility in the catalytic substrates, on the CVD growth of graphene. Cu-Ni alloys show complete solid solubility across their composition range and can be used to explore the influence of C solubility on graphene growth. Graphene is grown on Cu-Ni alloys of composition Cu, Cu70-Ni30, Cu55-Ni45, Cu33-Ni67 and Ni in a hot-wall CVD reactor. Firstly, the growth was achieved on pure metals (Cu and Ni) using CH4 as a C source and the produced film was characterised by Raman spectroscopy and scanning electron microscopy (SEM). The C profile within the substrate bulk was measured by glow discharge optical emission stereoscopy (GDOES). The latter showed the difference in bulk C content between Cu and Ni, which reflects the influence on the graphitic film on the surface. The CVD growth of graphene on Cu-Ni alloy showed a transition from bilayer graphene (BLG) to few layer graphene (FLG) surface coverage when the Ni content increased, which is accompanied by an increase in the diffusion of C in the bulk and incubation time. The cooling rate showed a significant effect on the graphene surface coverage; however, the influence varied with Ni content. The fluid flow simulation indicated that the gas velocity beneath the substrate is very low which results in a lower mass transfer to the bottom substrate surface. Gas-phase kinetics simulation reveals the impact of gas residence time on the concentration of active species; moreover, the concentration increases down the stream of the flowing gas. Finally, the surface reactions of the CH4/H2 mixture model showed a good agreement with the experimental observations under low growth pressure; however, it failed at high growth pressure.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:313458
Created by:
Al-Hilfi, Samir
Created:
14th February, 2018, 15:09:38
Last modified by:
Al-Hilfi, Samir
Last modified:
6th March, 2019, 11:35:36

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.