In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

DESIGN CONSIDERATIONS FOR LEO NANOSATELLITE PROPULSION TECHNOLOGIES

Macario Rojas, Alejandro

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

In recent years the space industry has seen significant growth in numbers of sub 10kg satellite platforms now known more broadly in the industry as nanosatellites. Nanosatellites potential applicability is driven by flourishing technologies miniaturisation in the consumer electronics market and commercialisation of space. Currently nanosatellite mission operations are limited in both lifetime and manoeuvrability due to limitations in on board propulsion technologies. Further enhancement of mission operations relies on more effective integration of current reaction-mass-based propulsion technologies and further development of miniaturised propulsion systems. Paradoxically, the compact spacecraft size and mass that facilitate nanosatellite access to space is presently a drawback in terms of acceptable systems performance and propulsion systems capacity. Moreover characteristic power density and vulnerability to the space environment is already high in nanosatellites in contrast to major satellites, rendering the design, inclusion, and optimisation of propulsion technologies a challenging task. This thesis focuses on techniques to support mission planning and characterisation of propulsion technologies for nanosatellites. Acknowledging the outweighing significance of solar activity modulating space environment perturbations and particularly atmospheric drag, a robust solar forecast method is proposed to support lifetime estimations. Complementing the pivotal framework information for propulsion system design and management, the vulnerability to atmospheric drag is assessed to identify the profile of the current vaguely defined drag coefficient of standard nanosatellites. Finally, addressing a crucial task on emerging propulsion technologies for nanosatellite systems, a method to improve low thrust characterisation via in-orbit manoeuvres using standard elementary attitude determination resources is devised. The robust solar activity forecast is carried out using observed historic and reconstructed Sun’s polar magnetic field, to define the initial state of an up-to-date solar magnetohydrodynamics computational model; the method successfully reproduces recent solar cycles activity, anticipating moderate-to-low activity during the next 25th cycle. The identification of the drag coefficient profile in standard nanosatellites is enabled by the statistical assessment of observed orbital decay through an iterative fitting process of propagated orbits; the profile is physically consistent and descriptive mostly in orbits below 350km during moderate-to-high solar activity. Finally, the devised thrust characterisation method exploits the regular geometry and mass distribution of standard nanosatellites to identify low thrust actuation via actuated body angular rotation rates in an intermediate axis spinner; precise computer simulations show that it is possible to improve low thrust estimations from weak and noisy sensor signals using the proposed method against typical methods using body angular acceleration.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mechanical Engineering
Publication date:
Location:
Manchester, UK
Total pages:
316
Abstract:
In recent years the space industry has seen significant growth in numbers of sub 10kg satellite platforms now known more broadly in the industry as nanosatellites. Nanosatellites potential applicability is driven by flourishing technologies miniaturisation in the consumer electronics market and commercialisation of space. Currently nanosatellite mission operations are limited in both lifetime and manoeuvrability due to limitations in on board propulsion technologies. Further enhancement of mission operations relies on more effective integration of current reaction-mass-based propulsion technologies and further development of miniaturised propulsion systems. Paradoxically, the compact spacecraft size and mass that facilitate nanosatellite access to space is presently a drawback in terms of acceptable systems performance and propulsion systems capacity. Moreover characteristic power density and vulnerability to the space environment is already high in nanosatellites in contrast to major satellites, rendering the design, inclusion, and optimisation of propulsion technologies a challenging task. This thesis focuses on techniques to support mission planning and characterisation of propulsion technologies for nanosatellites. Acknowledging the outweighing significance of solar activity modulating space environment perturbations and particularly atmospheric drag, a robust solar forecast method is proposed to support lifetime estimations. Complementing the pivotal framework information for propulsion system design and management, the vulnerability to atmospheric drag is assessed to identify the profile of the current vaguely defined drag coefficient of standard nanosatellites. Finally, addressing a crucial task on emerging propulsion technologies for nanosatellite systems, a method to improve low thrust characterisation via in-orbit manoeuvres using standard elementary attitude determination resources is devised. The robust solar activity forecast is carried out using observed historic and reconstructed Sun’s polar magnetic field, to define the initial state of an up-to-date solar magnetohydrodynamics computational model; the method successfully reproduces recent solar cycles activity, anticipating moderate-to-low activity during the next 25th cycle. The identification of the drag coefficient profile in standard nanosatellites is enabled by the statistical assessment of observed orbital decay through an iterative fitting process of propagated orbits; the profile is physically consistent and descriptive mostly in orbits below 350km during moderate-to-high solar activity. Finally, the devised thrust characterisation method exploits the regular geometry and mass distribution of standard nanosatellites to identify low thrust actuation via actuated body angular rotation rates in an intermediate axis spinner; precise computer simulations show that it is possible to improve low thrust estimations from weak and noisy sensor signals using the proposed method against typical methods using body angular acceleration.
Thesis main supervisor(s):
Funder(s):
Language:
en

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:313667
Created by:
Macario Rojas, Alejandro
Created:
5th March, 2018, 00:39:10
Last modified by:
Macario Rojas, Alejandro
Last modified:
3rd April, 2018, 11:45:15

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.