In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      The role of pentraxin 3 in mechanisms of angiogenesis and inflammation after ischaemic stroke

      Rajkovic, Ivana

      [Thesis]. Manchester, UK: The University of Manchester; 2018.

      Access to files

      Abstract

      Ischaemic stroke is the fourth leading cause of death in the UK, and is a major cause of disability worldwide. Currently, there is only one licensed drug for the treatment of stroke, known as tissue plasminogen activator (t-PA), which has a very narrow therapeutic window and is only effective in a small number of stroke patients. After an ischaemic stroke, several mechanisms mediating stroke pathophysiology, such as inflammation, are activated. Pre-clinical research is largely focused on limiting these damaging mechanisms, and also promoting repair mechanisms such as restoration of cerebral blood flow (CBF) and angiogenesis. The acute phase protein (PTX3) regulates peripheral inflammation and has also been reported to have a neuroprotective function after epileptic seizures. However, the role of PTX3 in brain inflammation and neuroprotection after cerebral ischaemia is currently completely unknown. Furthermore, PTX3 has been reported to promote repair after cerebral ischaemia, by stimulating BBB repair, reducing oedema, and promoting angiogenesis and neurogenesis. However, the effect of PTX3 on CBF recovery after stroke is currently unknown, and the underlying mechanisms involved in these reparative events remain unclear. Our study found that PTX3 promotes in vitro angiogenic processes, and exerts differential actions depending on the concentration and duration of treatment. Furthermore, we observed a more prominent pro-angiogenic action of PTX3 under hypoxic conditions. Our in vivo studies using the middle cerebral artery occlusion (MCAo) filament model to induce experimental cerebral ischaemia, revealed that PTX3 promotes long-term CBF recovery, angiogenesis, and exerts neuroprotection 28 d after ischaemic stroke. In addition, we assessed the role of PTX3 in neutrophil transmigration through the brain endothelium in vitro, and found that PTX3 regulates neutrophil transmigration. Furthermore, we induced inflammation into the brain via intrastriatal LPS injection or cerebral ischaemia. These studies found that PTX3 reduces neutrophil transmigration to the brain under these inflammatory conditions. In conclusion, our findings suggest that PTX3 may be a useful therapeutic target for ischaemic stroke and possibly other CNS inflammatory disorders, as it promotes repair mechanisms, provides neuroprotection, and prevents damaging inflammatory mechanisms after cerebral ischaemia.

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Neuroscience 3yr (NEP)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      214
      Abstract:
      Ischaemic stroke is the fourth leading cause of death in the UK, and is a major cause of disability worldwide. Currently, there is only one licensed drug for the treatment of stroke, known as tissue plasminogen activator (t-PA), which has a very narrow therapeutic window and is only effective in a small number of stroke patients. After an ischaemic stroke, several mechanisms mediating stroke pathophysiology, such as inflammation, are activated. Pre-clinical research is largely focused on limiting these damaging mechanisms, and also promoting repair mechanisms such as restoration of cerebral blood flow (CBF) and angiogenesis. The acute phase protein (PTX3) regulates peripheral inflammation and has also been reported to have a neuroprotective function after epileptic seizures. However, the role of PTX3 in brain inflammation and neuroprotection after cerebral ischaemia is currently completely unknown. Furthermore, PTX3 has been reported to promote repair after cerebral ischaemia, by stimulating BBB repair, reducing oedema, and promoting angiogenesis and neurogenesis. However, the effect of PTX3 on CBF recovery after stroke is currently unknown, and the underlying mechanisms involved in these reparative events remain unclear. Our study found that PTX3 promotes in vitro angiogenic processes, and exerts differential actions depending on the concentration and duration of treatment. Furthermore, we observed a more prominent pro-angiogenic action of PTX3 under hypoxic conditions. Our in vivo studies using the middle cerebral artery occlusion (MCAo) filament model to induce experimental cerebral ischaemia, revealed that PTX3 promotes long-term CBF recovery, angiogenesis, and exerts neuroprotection 28 d after ischaemic stroke. In addition, we assessed the role of PTX3 in neutrophil transmigration through the brain endothelium in vitro, and found that PTX3 regulates neutrophil transmigration. Furthermore, we induced inflammation into the brain via intrastriatal LPS injection or cerebral ischaemia. These studies found that PTX3 reduces neutrophil transmigration to the brain under these inflammatory conditions. In conclusion, our findings suggest that PTX3 may be a useful therapeutic target for ischaemic stroke and possibly other CNS inflammatory disorders, as it promotes repair mechanisms, provides neuroprotection, and prevents damaging inflammatory mechanisms after cerebral ischaemia.
      Thesis main supervisor(s):
      Thesis co-supervisor(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:314119
        Created by:
        Rajkovic, Ivana
        Created:
        5th April, 2018, 17:32:09
        Last modified by:
        Rajkovic, Ivana
        Last modified:
        1st May, 2019, 11:32:34

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.