In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Weak Gravitational Lensing with Radio Observations

Tunbridge, Benjamin John

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

Weak gravitational lensing is now well established as a powerful cosmological probe, particularly for studying large scale structure growth in the Universe. The vast majority of weak lensing experiments to date use optical and near infrared observations which are well suited to the requirements in source densities and shape analysis. In this thesis we outline the prospects associated with weak lensing surveys from radio observations. This can offer key advantages to optical counterpart studies such as the well defined observing beam pattern of a radio telescope and a window into a much broader observed redshift distribution. In addition to the prospect of radio weak lensing surveys alone, combining with optical counterparts in a cross-correlation study has been shown to mitigate uncorrelated systematics, further motivating the case for radio based weak lensing studies. The correlation of galaxy shapes through multi-wavelength observations will affect the noise on the cosmological power spectrum in cross-correlation analysis. We use radio and optical observations of the COSMOS field with the VLA and HST respectively, accompanied with simulations for calibration in order to measure shape correlations between wavelength regimes. Although we do not detect a correlation between optical and radio shapes, a lower limit on the intrinsic astrophysical scatter was placed at >0.212pi (or 38.2 degrees), through a Monte Carlo simulation of source catalogues with the measured uncertainties. The SuperCLASS experiment aims to measure a weak lensing signal with radio observations from a super-cluster field. We introduce the radio data, collected with the e-MERLIN and JVLA, and the reduction steps taken. Assisted by simulations, we have designed a shape measurement pipeline (SuperTRAP) which performs additional phase rotation and averaging steps to extract visibility sets on a source by source basis followed by image plane shape analysis. A series of staged tests of increasing complexity are outlined here and evaluated by the shape recovery bias and efficiency. Finally we present the optical counterpart observations and shape analysis for the SuperCLASS field, with data collected by the Subaru Suprime-Cam. Observational systematics are measured to form representative PSF models in each CCD exposure and the subsequent shape analysis from the I band photometry is presented. Shear analysis from the measured power spectrum shows good agreement with theoretical predictions. From the measured shear power spectrum we detect a strong signal in the E-mode band powers, equivalent to a 9.31sigma detection. Our measurements from the B-mode and E-B cross band powers suggest negligible contamination from systematics. The optical analysis presented here will provide the counterpart analysis to the radio for future cross-correlation studies.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Astronomy and Astrophysics
Publication date:
Location:
Manchester, UK
Total pages:
218
Abstract:
Weak gravitational lensing is now well established as a powerful cosmological probe, particularly for studying large scale structure growth in the Universe. The vast majority of weak lensing experiments to date use optical and near infrared observations which are well suited to the requirements in source densities and shape analysis. In this thesis we outline the prospects associated with weak lensing surveys from radio observations. This can offer key advantages to optical counterpart studies such as the well defined observing beam pattern of a radio telescope and a window into a much broader observed redshift distribution. In addition to the prospect of radio weak lensing surveys alone, combining with optical counterparts in a cross-correlation study has been shown to mitigate uncorrelated systematics, further motivating the case for radio based weak lensing studies. The correlation of galaxy shapes through multi-wavelength observations will affect the noise on the cosmological power spectrum in cross-correlation analysis. We use radio and optical observations of the COSMOS field with the VLA and HST respectively, accompanied with simulations for calibration in order to measure shape correlations between wavelength regimes. Although we do not detect a correlation between optical and radio shapes, a lower limit on the intrinsic astrophysical scatter was placed at >0.212pi (or 38.2 degrees), through a Monte Carlo simulation of source catalogues with the measured uncertainties. The SuperCLASS experiment aims to measure a weak lensing signal with radio observations from a super-cluster field. We introduce the radio data, collected with the e-MERLIN and JVLA, and the reduction steps taken. Assisted by simulations, we have designed a shape measurement pipeline (SuperTRAP) which performs additional phase rotation and averaging steps to extract visibility sets on a source by source basis followed by image plane shape analysis. A series of staged tests of increasing complexity are outlined here and evaluated by the shape recovery bias and efficiency. Finally we present the optical counterpart observations and shape analysis for the SuperCLASS field, with data collected by the Subaru Suprime-Cam. Observational systematics are measured to form representative PSF models in each CCD exposure and the subsequent shape analysis from the I band photometry is presented. Shear analysis from the measured power spectrum shows good agreement with theoretical predictions. From the measured shear power spectrum we detect a strong signal in the E-mode band powers, equivalent to a 9.31sigma detection. Our measurements from the B-mode and E-B cross band powers suggest negligible contamination from systematics. The optical analysis presented here will provide the counterpart analysis to the radio for future cross-correlation studies.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:314238
Created by:
Tunbridge, Benjamin
Created:
18th April, 2018, 11:53:05
Last modified by:
Tunbridge, Benjamin
Last modified:
9th January, 2019, 09:53:10

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.