In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Asymmetric Bioamination of Alcohols via Hydrogen-Borrowing

Thompson, Matthew

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

The value of biocatalysis lies in the unparalleled specificity with which enzymes catalyse reactions. This high specificity allows for synthetic chemists to rapidly build molecular complexity. Chiral amines represent an important structural motif and are found in numerous bioactive compounds. Developing environmentally benign routes to this class of compounds is of significant interest. Recently, a strategy known as “hydrogen-borrowing” has emerged as a way to convert cheap, readily available alcohols into chiral amines using an elegant, redox neutral biocatalytic cascade. This thesis describes the application of these hydrogen-borrowing cascades to the asymmetric amination of alcohols and the application of this cascade alongside other enabling technologies for biocatalysis. Protein engineering, surfactant-enabled chemocatalysis, enzyme immobilisation and the application of continuous flow are all interfaced. This thesis is presented in the journal format since a considerable body of the candidate’s PhD research has been published or prepared for publication in the near future. The research and review articles that have been compiled lend themselves to a clear narrative and their preparation took considerable effort.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry
Publication date:
Location:
Manchester, UK
Total pages:
271
Abstract:
The value of biocatalysis lies in the unparalleled specificity with which enzymes catalyse reactions. This high specificity allows for synthetic chemists to rapidly build molecular complexity. Chiral amines represent an important structural motif and are found in numerous bioactive compounds. Developing environmentally benign routes to this class of compounds is of significant interest. Recently, a strategy known as “hydrogen-borrowing” has emerged as a way to convert cheap, readily available alcohols into chiral amines using an elegant, redox neutral biocatalytic cascade. This thesis describes the application of these hydrogen-borrowing cascades to the asymmetric amination of alcohols and the application of this cascade alongside other enabling technologies for biocatalysis. Protein engineering, surfactant-enabled chemocatalysis, enzyme immobilisation and the application of continuous flow are all interfaced. This thesis is presented in the journal format since a considerable body of the candidate’s PhD research has been published or prepared for publication in the near future. The research and review articles that have been compiled lend themselves to a clear narrative and their preparation took considerable effort.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:314642
Created by:
Thompson, Matthew
Created:
23rd May, 2018, 07:14:40
Last modified by:
Thompson, Matthew
Last modified:
3rd June, 2019, 11:00:50

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.