In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      Determining Important Pulmonary Regulators of Immunity to the Bacterium Francisella tularensis

      Casulli, Joshua

      [Thesis]. Manchester, UK: The University of Manchester; 2018.

      Access to files

      Abstract

      The regulation of pulmonary immune homeostasis is important in maintaining immune ignorance to harmless stimuli, to avoid a continuous inflammatory environment. Yet, it must also allow for the production of appropriate protective immune responses against potentially harmful pathogens. However, some pathogens can subvert the immune response to increase survival. An important example is Francisella tularensis, a highly infectious Gram-negative intracellular bacterium that dampens the immune response early in infection to aid bacterial replication. Understanding the function of host pulmonary regulatory pathways during F. tularensis infection may allow novel therapeutic targets to be identified. This PhD thesis identifies an unexpected pathway that promotes host responses during bacterial infection of the lung. Thus, expression of the CD200 receptor (CD200R), a molecule previously associated with dampening immune responses in the lung, is required to limit infection by the lethal intracellular bacterium F. tularensis. Lack of CD200R expression enhanced infectious burden in vitro and in vivo. Exacerbated pulmonary F. tularensis burden was determined to be neutrophil-dependent, with depletion of neutrophils in vivo during F. tularensis infection abrogating the increased bacterial burden in lungs of CD200R-/- mice. Mechanistically, it was determined that CD200R-/- neutrophils having a significantly decreased ability to produce ROS compared to WT, thus contributing to a reduced capability to deal with F. tularensis infection. Data in this thesis suggests that the absence of CD200R on neutrophils aids the colonisation and proliferation of F. tularensis in the lung via reduction of neutrophil ROS production; highlighting the important role this pathway plays in promoting immunity to infection. Maintaining the antimicrobial properties of neutrophils via the CD200R pathway may represent a novel therapeutic approach for treating intracellular pathogens.

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Immunology 3.5yr (IIRM)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      201
      Abstract:
      The regulation of pulmonary immune homeostasis is important in maintaining immune ignorance to harmless stimuli, to avoid a continuous inflammatory environment. Yet, it must also allow for the production of appropriate protective immune responses against potentially harmful pathogens. However, some pathogens can subvert the immune response to increase survival. An important example is Francisella tularensis, a highly infectious Gram-negative intracellular bacterium that dampens the immune response early in infection to aid bacterial replication. Understanding the function of host pulmonary regulatory pathways during F. tularensis infection may allow novel therapeutic targets to be identified. This PhD thesis identifies an unexpected pathway that promotes host responses during bacterial infection of the lung. Thus, expression of the CD200 receptor (CD200R), a molecule previously associated with dampening immune responses in the lung, is required to limit infection by the lethal intracellular bacterium F. tularensis. Lack of CD200R expression enhanced infectious burden in vitro and in vivo. Exacerbated pulmonary F. tularensis burden was determined to be neutrophil-dependent, with depletion of neutrophils in vivo during F. tularensis infection abrogating the increased bacterial burden in lungs of CD200R-/- mice. Mechanistically, it was determined that CD200R-/- neutrophils having a significantly decreased ability to produce ROS compared to WT, thus contributing to a reduced capability to deal with F. tularensis infection. Data in this thesis suggests that the absence of CD200R on neutrophils aids the colonisation and proliferation of F. tularensis in the lung via reduction of neutrophil ROS production; highlighting the important role this pathway plays in promoting immunity to infection. Maintaining the antimicrobial properties of neutrophils via the CD200R pathway may represent a novel therapeutic approach for treating intracellular pathogens.
      Thesis main supervisor(s):
      Thesis co-supervisor(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:315159
        Created by:
        Casulli, Joshua
        Created:
        3rd July, 2018, 14:28:49
        Last modified by:
        Casulli, Joshua
        Last modified:
        14th August, 2019, 10:44:08

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.