In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Conformational Mapping of Dynamic Protein Systems by PELDOR Spectroscopy

Stewart, Andrew

[Thesis]. Manchester, UK: The University of Manchester; 2018.

Access to files

Abstract

Understanding the relationship between protein structure and function remains a large challenge in protein biochemistry. In particular, large multi-domain proteins pose challenges for determining their dynamic behavior due to their size and complexity. In this thesis, we study several complex proteins including nitric oxide synthase (NOS), Cytochrome P450-BM-3 (CYP102A1), and calmodulin. All of these proteins show dynamic motion when binding to ligands or cofactors, but how these events change protein structure, and how this is linked to protein function, is not well understood, and in the case of NOS and BM-3 there are not even any full-length high-resolution structures. Here, we utilize a synergistic combination of pulsed electron paramagnetic resonance (EPR) spectroscopy (PELDOR) and computational methods to illuminate protein structural dynamics (CaM and NOS) and domain architecture (BM-3). We reveal that the high-resolution structures of the major states of calmodulin are representative of its behavior in solution. We also investigate its function with NOS and develop spin labelling tools using non-natural amino acids which can be used to further probe NOS structure. Finally, we develop a model for full-length BM-3 based on EPR and computational data. Taken together, our results reveal the importance of protein dynamics in protein structure and function and highlight the importance of methods like PELDOR in revealing these motions.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Structural Biology
Publication date:
Location:
Manchester, UK
Total pages:
284
Abstract:
Understanding the relationship between protein structure and function remains a large challenge in protein biochemistry. In particular, large multi-domain proteins pose challenges for determining their dynamic behavior due to their size and complexity. In this thesis, we study several complex proteins including nitric oxide synthase (NOS), Cytochrome P450-BM-3 (CYP102A1), and calmodulin. All of these proteins show dynamic motion when binding to ligands or cofactors, but how these events change protein structure, and how this is linked to protein function, is not well understood, and in the case of NOS and BM-3 there are not even any full-length high-resolution structures. Here, we utilize a synergistic combination of pulsed electron paramagnetic resonance (EPR) spectroscopy (PELDOR) and computational methods to illuminate protein structural dynamics (CaM and NOS) and domain architecture (BM-3). We reveal that the high-resolution structures of the major states of calmodulin are representative of its behavior in solution. We also investigate its function with NOS and develop spin labelling tools using non-natural amino acids which can be used to further probe NOS structure. Finally, we develop a model for full-length BM-3 based on EPR and computational data. Taken together, our results reveal the importance of protein dynamics in protein structure and function and highlight the importance of methods like PELDOR in revealing these motions.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:317701
Created by:
Stewart, Andrew
Created:
19th December, 2018, 14:13:16
Last modified by:
Stewart, Andrew
Last modified:
13th January, 2020, 10:59:32

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.