In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

USING CHEMICAL DENATURANTS TO DETERMINE AGGREGATION PROPENSITY OF BIOPHARMACEUTICALS

Holloway, Luke

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

The overall aim of this PhD project was to use chemical denaturants such as urea and guanidine hydrochloride (Gdn HCl) to increase the relative population of intermediate and/or unfolded states of proteins as known precursors to protein aggregation. Measurements of protein-protein interactions (PPIs) under denaturing conditions of both the model protein lysozyme and a set of five pharmaceutically relevant monoclonal antibodies (mAbs) were made. Light scattering techniques were employed including static light scattering (SLS) to determine the second osmotic viral coefficient, B22 and dynamic light scattering (DLS) to determine the interaction parameter, kD. SLS and DLS was also used to measure aggregate growth rates under denaturant and/or temperature accelerated conditions and were ratified by measuring monomer loss kinetics using size exclusion chromatography couple with multi-angle laser light scattering (SEC-MALLS). The data generated in the first results chapter highlighted the importance of measuring the refractive index increment of the protein under constant solvent chemical potential, to ensure correct values of B22 and molecular weight at infinite protein dilution are obtained as well as excluding short delay times of an autocorrelation decay in solutions of high co-solvent concentrations to similarly calculate correct values of kD and hydrodynamic radius at infinite protein dilution. The data generated in the second and third results chapter showed that PPIs of intermediate, aggregate prone states could be quantified using SLS at high protein concentrations (20 g/L) and were related to the aggregation propensity of the mAbs under both native and denaturing conditions. Furthermore, addition of 0.5 M arginine HCl under denaturing conditions caused a reduction in aggregation rates and concordantly an increase in repulsive PPIs.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemical Engineering & Analytical Science
Publication date:
Location:
Manchester, UK
Total pages:
202
Abstract:
The overall aim of this PhD project was to use chemical denaturants such as urea and guanidine hydrochloride (Gdn HCl) to increase the relative population of intermediate and/or unfolded states of proteins as known precursors to protein aggregation. Measurements of protein-protein interactions (PPIs) under denaturing conditions of both the model protein lysozyme and a set of five pharmaceutically relevant monoclonal antibodies (mAbs) were made. Light scattering techniques were employed including static light scattering (SLS) to determine the second osmotic viral coefficient, B22 and dynamic light scattering (DLS) to determine the interaction parameter, kD. SLS and DLS was also used to measure aggregate growth rates under denaturant and/or temperature accelerated conditions and were ratified by measuring monomer loss kinetics using size exclusion chromatography couple with multi-angle laser light scattering (SEC-MALLS). The data generated in the first results chapter highlighted the importance of measuring the refractive index increment of the protein under constant solvent chemical potential, to ensure correct values of B22 and molecular weight at infinite protein dilution are obtained as well as excluding short delay times of an autocorrelation decay in solutions of high co-solvent concentrations to similarly calculate correct values of kD and hydrodynamic radius at infinite protein dilution. The data generated in the second and third results chapter showed that PPIs of intermediate, aggregate prone states could be quantified using SLS at high protein concentrations (20 g/L) and were related to the aggregation propensity of the mAbs under both native and denaturing conditions. Furthermore, addition of 0.5 M arginine HCl under denaturing conditions caused a reduction in aggregation rates and concordantly an increase in repulsive PPIs.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:318272
Created by:
Holloway, Luke
Created:
5th February, 2019, 20:19:16
Last modified by:
Holloway, Luke
Last modified:
8th February, 2019, 13:28:11

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.