In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The cross-correlation between large scale structure, HI intensity maps and CMB maps

Chen, Tianyue

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

HI intensity mapping is a new and efficient technique for mapping the large-scale-structures in the Universe and its expansion history in three dimensions. Due to the faintness of HI signal, an effective removal of Galactic foregrounds and a careful control of systematics is essential. One way of mitigating systematics is by cross-correlating multiple surveys issued from complementary datasets, which benefits from cancelled systematics, zero-noise-biased cross-spectrum, and complementary mass bias information. The first part of the author’s work focuses on the cross-correlation between CMB maps and optical galaxy survey, where the thermal SZ cluster residuals in the Planck 2015 NILC CMB map is detected with ≈ 30ĂŹƒ significance at cluster scale, and overall≈ 51ĂŹƒ significance including large scales. The percentage of thermal SZ emission left over in the NILC CMB map is quantified to be 44 ± 4%, which, however, is proved to have negligible impact on ISW measurement but can potentially challenge upcoming CMB experiments with higher resolution. In contrast, we provide an alternative CMB map, produced with the 2D-ILC component separation technique, which is shown to be free from thermal SZ contamination. In the second part, the author forecasts the impact of intensity mapping 1/ f noise on cosmological parameter constraints through a Fisher matrix analysis. Without 1/ f noise, constraints of w0 = −1 ± 0.06, wa = 0 ± 0.13 and HI bias bHI = 1 ± 0.02 are obtained from SKA1-MID Band 2+Planck. A representative 1/ f noise model degrades the results by âˆÂĽ 50%. To mitigate this, one requires a minimised 1/ f noise spectral slope, a low knee frequency and a large telescope slew speed. A correlation in fre- quency is also preferred. Finally, forecasts have been made on the cross-correlation between HI intensity maps and the galaxy lensing field. Even with two idealised optimal surveys without any noise and a full-sky coverage, the total detection signal-to-noise ratio and parameter constraints are merely comparable to those obtained from Square Kilometre Array (SKA) auto-correlation with the Planck prior. Therefore, the auto-correlation of intensity maps performs better than cross-correlation with galaxy lensing field, in terms of signal detection and cosmological parameter constraints.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Astronomy and Astrophysics
Publication date:
Location:
Manchester, UK
Total pages:
243
Abstract:
HI intensity mapping is a new and efficient technique for mapping the large-scale-structures in the Universe and its expansion history in three dimensions. Due to the faintness of HI signal, an effective removal of Galactic foregrounds and a careful control of systematics is essential. One way of mitigating systematics is by cross-correlating multiple surveys issued from complementary datasets, which benefits from cancelled systematics, zero-noise-biased cross-spectrum, and complementary mass bias information. The first part of the author’s work focuses on the cross-correlation between CMB maps and optical galaxy survey, where the thermal SZ cluster residuals in the Planck 2015 NILC CMB map is detected with ≈ 30ĂŹƒ significance at cluster scale, and overall≈ 51ĂŹƒ significance including large scales. The percentage of thermal SZ emission left over in the NILC CMB map is quantified to be 44 ± 4%, which, however, is proved to have negligible impact on ISW measurement but can potentially challenge upcoming CMB experiments with higher resolution. In contrast, we provide an alternative CMB map, produced with the 2D-ILC component separation technique, which is shown to be free from thermal SZ contamination. In the second part, the author forecasts the impact of intensity mapping 1/ f noise on cosmological parameter constraints through a Fisher matrix analysis. Without 1/ f noise, constraints of w0 = −1 ± 0.06, wa = 0 ± 0.13 and HI bias bHI = 1 ± 0.02 are obtained from SKA1-MID Band 2+Planck. A representative 1/ f noise model degrades the results by âˆÂĽ 50%. To mitigate this, one requires a minimised 1/ f noise spectral slope, a low knee frequency and a large telescope slew speed. A correlation in fre- quency is also preferred. Finally, forecasts have been made on the cross-correlation between HI intensity maps and the galaxy lensing field. Even with two idealised optimal surveys without any noise and a full-sky coverage, the total detection signal-to-noise ratio and parameter constraints are merely comparable to those obtained from Square Kilometre Array (SKA) auto-correlation with the Planck prior. Therefore, the auto-correlation of intensity maps performs better than cross-correlation with galaxy lensing field, in terms of signal detection and cosmological parameter constraints.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:318277
Created by:
Chen, Tianyue
Created:
6th February, 2019, 10:16:03
Last modified by:
Chen, Tianyue
Last modified:
8th February, 2019, 13:28:09

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.