In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Leading Edge Tubercles as Passive Flow Control Devices

Harley, William

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

Leading edge tubercles are bio-inspired passive flow control devices. Investigations in the literature are predominantly in the transitional range 1e5 < Re < 6e5. On simple non-swept sections, tubercles produce an earlier stall and reduce maximum lift. A slight improvement in drag is predominantly reported. Reasonable evidence of topology and corresponding mechanism of operation does not yet exist. In addition to this, the application of tubercles to moderately swept wings is less developed. In this thesis, aerodynamic coefficients (CL and CD) have validated results documented in literature. Flow visualisation results validate the existence of stream-wise vortex pairs which are shown to remain coherent up to 1.5c behind the trailing edge. Surface topology has been elucidated with greater fidelity leading to a new flow topology being assigned. Based on this, a mechanism for the operation of leading edge tubercles has been ventured. Studies on moderately swept wings (20 and 40 degrees) show that tubercle behaviour remains approximately unchanged from the non-swept cases. This allows conclusions from non-swept studies to be applied to swept wings with greater confidence. A Reynolds number suitable application of the findings in this thesis is Small Unmanned Aerial Systems (SUAS). Tubercles could remove unwanted dynamic modes such as wing rock and negative tendencies like tip stall.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Aerospace Engineering
Publication date:
Location:
Manchester, UK
Total pages:
428
Abstract:
Leading edge tubercles are bio-inspired passive flow control devices. Investigations in the literature are predominantly in the transitional range 1e5 < Re < 6e5. On simple non-swept sections, tubercles produce an earlier stall and reduce maximum lift. A slight improvement in drag is predominantly reported. Reasonable evidence of topology and corresponding mechanism of operation does not yet exist. In addition to this, the application of tubercles to moderately swept wings is less developed. In this thesis, aerodynamic coefficients (CL and CD) have validated results documented in literature. Flow visualisation results validate the existence of stream-wise vortex pairs which are shown to remain coherent up to 1.5c behind the trailing edge. Surface topology has been elucidated with greater fidelity leading to a new flow topology being assigned. Based on this, a mechanism for the operation of leading edge tubercles has been ventured. Studies on moderately swept wings (20 and 40 degrees) show that tubercle behaviour remains approximately unchanged from the non-swept cases. This allows conclusions from non-swept studies to be applied to swept wings with greater confidence. A Reynolds number suitable application of the findings in this thesis is Small Unmanned Aerial Systems (SUAS). Tubercles could remove unwanted dynamic modes such as wing rock and negative tendencies like tip stall.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:318338
Created by:
Harley, William
Created:
9th February, 2019, 12:08:09
Last modified by:
Harley, William
Last modified:
6th March, 2019, 11:31:18

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.