In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      Investigating the role of the mesenchymal stem cell secretome in promoting recovery after ischaemic stroke

      Cunningham, Catriona Jane

      [Thesis]. Manchester, UK: The University of Manchester; 2019.

      Access to files

      Abstract

      Stroke is a major global health problem with limited treatment options. Mesenchymal stem cells (MSCs) hold great potential as a novel regenerative therapy for stroke having previously been shown to promote repair and functional recovery in rodent models of cerebral ischaemia. This is increasing evidence that much the beneficial effects observed are mediated by the MSC secretome, collective term for the vast array of chemokines, cytokines and growth factors secreted by the cells. The aim of this doctoral thesis therefore was to further investigate the role of the MSC secretome in promoting repair after ischaemic stroke. The potential of in vitro preconditioning strategies to increase the efficacy of an MSC therapy was explored. It was found that priming human bone marrow-derived MSCs with interleukin-1 alpha (IL-1alpha), a pro-inflammatory cytokine, increased secretion of granulocyte-colony stimulating factor (G-CSF). Conditioned medium derived from IL-1alpha primed cells led to decreased secretion of tumour necrosis factor-alpha (TNF-alpha and IL-6 from lipopolysaccharide (LPS)-stimulated microglia. Building upon this work, the efficacy of conditioned medium was assessed in ischaemic stroke using the intraluminal filament model of middle cerebral artery occlusion (MCAO). In the initial study, conditioned medium was administered to mice at the time of stroke. This had a neuroprotective effect leading to reduction (30%) in lesion volume and modest improvements in 28-point neurological score and nest building performance at days 2 and 4 respectively compared with the vehicle treated group. Delaying administration to 24 h post-stroke led to increased nest building scores at day 9 and significantly improved neurological scores from day 7 onwards independently of neuroprotection. In conclusion while future work is required to determine the mechanisms of action and define which mediators are responsible for promoting repair, the MSC secretome has great potential as therapy for ischaemic stroke.

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD CDT Regenerative Medicine 4yr (NEP)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      204
      Abstract:
      Stroke is a major global health problem with limited treatment options. Mesenchymal stem cells (MSCs) hold great potential as a novel regenerative therapy for stroke having previously been shown to promote repair and functional recovery in rodent models of cerebral ischaemia. This is increasing evidence that much the beneficial effects observed are mediated by the MSC secretome, collective term for the vast array of chemokines, cytokines and growth factors secreted by the cells. The aim of this doctoral thesis therefore was to further investigate the role of the MSC secretome in promoting repair after ischaemic stroke. The potential of in vitro preconditioning strategies to increase the efficacy of an MSC therapy was explored. It was found that priming human bone marrow-derived MSCs with interleukin-1 alpha (IL-1alpha), a pro-inflammatory cytokine, increased secretion of granulocyte-colony stimulating factor (G-CSF). Conditioned medium derived from IL-1alpha primed cells led to decreased secretion of tumour necrosis factor-alpha (TNF-alpha and IL-6 from lipopolysaccharide (LPS)-stimulated microglia. Building upon this work, the efficacy of conditioned medium was assessed in ischaemic stroke using the intraluminal filament model of middle cerebral artery occlusion (MCAO). In the initial study, conditioned medium was administered to mice at the time of stroke. This had a neuroprotective effect leading to reduction (30%) in lesion volume and modest improvements in 28-point neurological score and nest building performance at days 2 and 4 respectively compared with the vehicle treated group. Delaying administration to 24 h post-stroke led to increased nest building scores at day 9 and significantly improved neurological scores from day 7 onwards independently of neuroprotection. In conclusion while future work is required to determine the mechanisms of action and define which mediators are responsible for promoting repair, the MSC secretome has great potential as therapy for ischaemic stroke.
      Thesis main supervisor(s):
      Thesis co-supervisor(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:318453
        Created by:
        Cunningham, Catriona
        Created:
        20th February, 2019, 22:02:55
        Last modified by:
        Cunningham, Catriona
        Last modified:
        6th March, 2019, 11:31:30

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.