In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Laser cleaning of aluminium alloys

Suebka, Chutimon

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

Laser cleaning has been employed in a wide range of industries as a potential substitution to conventional surface cleaning methods using chemical or mechanical techniques. The interest of using it to remove oxide layers formed in manufacturing processes on metallic substrates, which is essential for bonding and jointing applications, has been increased in recent years, especially in aerospace and automotive industries. However, the understanding of surface modification by laser cleaning is still limited. The present work studies the effect of laser cleaning on three aluminium alloys, including AA7024-T4, AA5083-O and AA2024-T3 alloys, in terms of surface characteristics, corrosion behaviour and welding performance. The surface analysis has revealed that laser cleaning effectively removes the oxide layers originated from manufacturing processes, comprising of MgO and MgAl2O4 for AA7024-T4 and AA5083-O alloys which results in brighter surface with an increase of surface reflectance. A formation of thin oxide layer induced by laser cleaning, which comprises of magnesium oxide and aluminium oxide, has been observed on the cleaned surface. The composition and thickness of this newly formed oxide layer are varied by several factors including the applied laser fluence, laser absorptivity of alloy surface and alloy compositions. The corrosion evaluation by immersion in 3.5 wt.% NaCl solution has shown that the surface modification by laser cleaning increases the corrosion resistance, suggesting that the formation of MgO and Al2O3 oxide layer is more protective than the porous oxide layer presented on the as-received surface. The study of laser cleaning as a surface preparation prior to laser welding of AA2024-T3 and AA5083-O alloys has achieved a significant reduction of porosity in the weld to an average ratio of porosity area of 1% from an average ratio of 3% in AA2024 alloy and 5% in AA5083 alloy without laser cleaning. Based on the surface characterisation, the decrease of pores is attributed to the removal of hydroxide/oxide layer which is related to the hydrogen source. The mechanical tests have provided further confirmation, showing an increase of weld hardness and the ultimate tensile strength in laser cleaned samples compared with uncleaned alloys.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials
Publication date:
Location:
Manchester, UK
Total pages:
252
Abstract:
Laser cleaning has been employed in a wide range of industries as a potential substitution to conventional surface cleaning methods using chemical or mechanical techniques. The interest of using it to remove oxide layers formed in manufacturing processes on metallic substrates, which is essential for bonding and jointing applications, has been increased in recent years, especially in aerospace and automotive industries. However, the understanding of surface modification by laser cleaning is still limited. The present work studies the effect of laser cleaning on three aluminium alloys, including AA7024-T4, AA5083-O and AA2024-T3 alloys, in terms of surface characteristics, corrosion behaviour and welding performance. The surface analysis has revealed that laser cleaning effectively removes the oxide layers originated from manufacturing processes, comprising of MgO and MgAl2O4 for AA7024-T4 and AA5083-O alloys which results in brighter surface with an increase of surface reflectance. A formation of thin oxide layer induced by laser cleaning, which comprises of magnesium oxide and aluminium oxide, has been observed on the cleaned surface. The composition and thickness of this newly formed oxide layer are varied by several factors including the applied laser fluence, laser absorptivity of alloy surface and alloy compositions. The corrosion evaluation by immersion in 3.5 wt.% NaCl solution has shown that the surface modification by laser cleaning increases the corrosion resistance, suggesting that the formation of MgO and Al2O3 oxide layer is more protective than the porous oxide layer presented on the as-received surface. The study of laser cleaning as a surface preparation prior to laser welding of AA2024-T3 and AA5083-O alloys has achieved a significant reduction of porosity in the weld to an average ratio of porosity area of 1% from an average ratio of 3% in AA2024 alloy and 5% in AA5083 alloy without laser cleaning. Based on the surface characterisation, the decrease of pores is attributed to the removal of hydroxide/oxide layer which is related to the hydrogen source. The mechanical tests have provided further confirmation, showing an increase of weld hardness and the ultimate tensile strength in laser cleaned samples compared with uncleaned alloys.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:318563
Created by:
Suebka, Chutimon
Created:
27th February, 2019, 16:13:58
Last modified by:
Suebka, Chutimon
Last modified:
6th March, 2019, 11:31:43

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.