In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

On the development and application of AIBL-pKa, a pKa predictor based on equilibrium bond lengths of a single protonation state

Caine, Bethan Alice

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

Development of a new drug or agrochemical product is a multifaceted task, and it often requires many years of research and millions of pounds to get a single compound to market. During the discovery process, thousands of compounds are screened for their pharmacokinetic properties, bioavailability and toxicity. As the ionization state of a compound at specific pH can influence such properties, knowledge of its aqueous acid dissociation constant(s) (pKa) provides a vital tool in understanding and predicting efficacy and mechanism of action. In silico methods of pKa prediction are now a vital part of modern drug and agrochemical discovery, as in addition to saving time and materials, they allow for virtual screening of millions of compounds to take place, very early in the discovery process. The AIBL-pKa approach (Ab Initio Bond Lengths-pKa) is a pKa prediction method, which works on the basis that for a series of electronic congeners, certain equilibrium bond lengths have a linear relationship with their aqueous pKa values, even when modelled in the gas-phase. Whilst many pKa prediction methods exist, each having their own caveats and advantages, there are some types of compound for which predictions remain intrinsically challenging. Problematic compounds include those that exhibit tautomerism, compounds which have 50+ atoms and high conformational felixibility, and compounds containing multiple sites of ionization. The research described here shows that AIBL-pKa can provide solutions to these more complex challenges, with Mean Absolute Error values for external test sets typically below 0.35 log units. Furthermore, our use of quantum chemically derived 3D structures means that hydrogen bonding and steric effects on pKa are implicitly accounted for. Notably, this work features numerous instances where predictions have led to the re-measurement and amendment of erroneous experimental pKa values, i.e., theory has corrected experiment. For each of the four ionizable group case studies that are featured (guanidines, sulfonamides, 1,3-diketones and benzoic/naphthoic acids), in addition to the derivation and validation of predictive equations, a rationale is also presented to explain why and how the AIBL-pKa relationship occurs.

Additional content not available electronically

Supporting Information available as .pdf

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
299
Abstract:
Development of a new drug or agrochemical product is a multifaceted task, and it often requires many years of research and millions of pounds to get a single compound to market. During the discovery process, thousands of compounds are screened for their pharmacokinetic properties, bioavailability and toxicity. As the ionization state of a compound at specific pH can influence such properties, knowledge of its aqueous acid dissociation constant(s) (pKa) provides a vital tool in understanding and predicting efficacy and mechanism of action. In silico methods of pKa prediction are now a vital part of modern drug and agrochemical discovery, as in addition to saving time and materials, they allow for virtual screening of millions of compounds to take place, very early in the discovery process. The AIBL-pKa approach (Ab Initio Bond Lengths-pKa) is a pKa prediction method, which works on the basis that for a series of electronic congeners, certain equilibrium bond lengths have a linear relationship with their aqueous pKa values, even when modelled in the gas-phase. Whilst many pKa prediction methods exist, each having their own caveats and advantages, there are some types of compound for which predictions remain intrinsically challenging. Problematic compounds include those that exhibit tautomerism, compounds which have 50+ atoms and high conformational felixibility, and compounds containing multiple sites of ionization. The research described here shows that AIBL-pKa can provide solutions to these more complex challenges, with Mean Absolute Error values for external test sets typically below 0.35 log units. Furthermore, our use of quantum chemically derived 3D structures means that hydrogen bonding and steric effects on pKa are implicitly accounted for. Notably, this work features numerous instances where predictions have led to the re-measurement and amendment of erroneous experimental pKa values, i.e., theory has corrected experiment. For each of the four ionizable group case studies that are featured (guanidines, sulfonamides, 1,3-diketones and benzoic/naphthoic acids), in addition to the derivation and validation of predictive equations, a rationale is also presented to explain why and how the AIBL-pKa relationship occurs.
Additional digital content not deposited electronically:
Supporting Information available as .pdf
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:319800
Created by:
Caine, Bethan
Created:
12th June, 2019, 11:26:03
Last modified by:
Caine, Bethan
Last modified:
1st July, 2019, 14:03:19

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.