In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Graphene Aerogels for Capacitive Energy Storage

    Casano Carnicer, Gabriel

    [Thesis]. Manchester, UK: The University of Manchester; 2019.

    Access to files

    Abstract

    Graphene is a promising material for supercapacitor electrodes, both in electric double layer capacitors and as a conductive support for incorporating materials with large pseudocapacitance, yet further development is still needed. Aerogels represent an attractive way to fabricate 3D grapehene structures with large and accessible surface areas and therefore useful for supercapacitor electrodes. Among the different methods available for aerogel production, freeze casting is a versatile technique, allowing good control of morphology. Freeze casting has therefore been applied to graphene-based materials, however most examples reported so far focus on using graphene oxide (GO) as the precursor material dispersed in water, which carries some inherent disadvantages in terms crystalline quality and processing conditions available. Using non-aqueous solvents which are solid at room temperature but can be easily melted upon heating enables sublimation under ambient conditions, making the process simpler and potentially more scalable. They also enable the use of other forms of graphene-based materials, e.g. pristine graphene sheets, which are difficult to disperse in water and reduce the need for further processing after solvent sublimation. This thesis therefore explores the fabrication of graphene-based aerogels using non-aqueous solvents and room temperature sublimation. Formation of aerogels utilising camphene as solvent and using different sources of graphene-related materials is presented, including six different commercial products and in-house produced GO. Aerogels utilising commercial graphene nanoplatelets, XG C750, as the graphene source achieved the highest specific capacitance, thanks to the source material's high starting surface area and ability to be effectively dispersed in the solvent. Successful fabrication of graphene-based aerogels is also demonstrated in five different solvent systems: camphene, menthol and phenol as single solvents, as well as mixtures of camphor with camphene and naphthalene. Menthol-based aerogels achieved the best overall performance in terms of surface area and capacitance, presenting a promising route for further exploration thanks to menthol's low toxicity and cost.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD GrapheneNOWNANO CDT
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    219
    Abstract:
    Graphene is a promising material for supercapacitor electrodes, both in electric double layer capacitors and as a conductive support for incorporating materials with large pseudocapacitance, yet further development is still needed. Aerogels represent an attractive way to fabricate 3D grapehene structures with large and accessible surface areas and therefore useful for supercapacitor electrodes. Among the different methods available for aerogel production, freeze casting is a versatile technique, allowing good control of morphology. Freeze casting has therefore been applied to graphene-based materials, however most examples reported so far focus on using graphene oxide (GO) as the precursor material dispersed in water, which carries some inherent disadvantages in terms crystalline quality and processing conditions available. Using non-aqueous solvents which are solid at room temperature but can be easily melted upon heating enables sublimation under ambient conditions, making the process simpler and potentially more scalable. They also enable the use of other forms of graphene-based materials, e.g. pristine graphene sheets, which are difficult to disperse in water and reduce the need for further processing after solvent sublimation. This thesis therefore explores the fabrication of graphene-based aerogels using non-aqueous solvents and room temperature sublimation. Formation of aerogels utilising camphene as solvent and using different sources of graphene-related materials is presented, including six different commercial products and in-house produced GO. Aerogels utilising commercial graphene nanoplatelets, XG C750, as the graphene source achieved the highest specific capacitance, thanks to the source material's high starting surface area and ability to be effectively dispersed in the solvent. Successful fabrication of graphene-based aerogels is also demonstrated in five different solvent systems: camphene, menthol and phenol as single solvents, as well as mixtures of camphor with camphene and naphthalene. Menthol-based aerogels achieved the best overall performance in terms of surface area and capacitance, presenting a promising route for further exploration thanks to menthol's low toxicity and cost.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:320253
    Created by:
    Casano Carnicer, Gabriel
    Created:
    23rd July, 2019, 19:01:03
    Last modified by:
    Casano Carnicer, Gabriel
    Last modified:
    14th August, 2019, 10:40:29

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.