In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

SYNTHESIS AND FABRICATION ROUTES FOR PIM-1-BASED MEMBRANES

Tamaddondar, Marzieh

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

The need for more-efficient and environmentally-friendly CO2 separation techniques is becoming more and more evident for a carbon-constrained world. High performance membrane materials, such as Polymers of Intrinsic Microporosity (PIMs) and specifically PIM-1, can promote faster growth of the technology of membrane gas separation. However, despite the potential of high free volume polymers such as PIM-1, the decay in their performance over time has inhibited a full exploitation of these materials and this has been the motive for the current project. This research explores a variety of methods to improve the initial and/or the long term performance of PIM-1-based membranes for CO2 separation. Expanding on the current studies on PIM-1-based membranes, it has been tried to focus on novel approaches for fabrication of membranes and development of materials. The explored routes in this research include: in situ PIM-1 synthesis, i.e. integration of PIM-1 synthesis and thin film composite (TFC) membrane fabrication, synthesis of novel crosslinked materials for incorporation into composite membranes based on PIM-1 and grafting reactions to improve the compatibility between the two phases of PIM-1-based composite membranes. In situ synthesis of PIM-1 and highly crosslinked network-PIM-1 was investigated on porous organic and inorganic supports with high thermal and chemical stability. Interfacial polymerisation of an octafluoro and a tetrahydroxy monomer led to promising CO2/CH4 selectivity (~ 15) for the in situ generated highly crosslinked TFC membrane. A highly-crosslinked network variant of PIM-1 with (ultra-)microporous nanoplatelet structure was successfully synthesized here for the first time. A noticeable improvement in the CO2/CH4 mixed-gas (1:1, v:v) separation performance of PIM-1 membranes at 2 atm transmembrane pressure difference and 298 K was obtained upon incorporation of network-PIM-1 nanoplatelets in PIM-1 continuous matrix. Low-crosslink-density (LCD) network-PIM-1 was also synthesised and was incorporated into PIM-1-based Mixed Matrix Membranes (MMMs). Conventional mixing/casting method or grafting PIM-1 onto LCD network-PIM-1 was explored as two separate approaches for the preparation of MMMs. The obtained MMMs based on grafting PIM-1 onto LCD network-PIM-1 showed a noticeable improvement in the aging behaviour, compared to PIM-1 membranes and the conventionally-fabricated MMMs.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
232
Abstract:
The need for more-efficient and environmentally-friendly CO2 separation techniques is becoming more and more evident for a carbon-constrained world. High performance membrane materials, such as Polymers of Intrinsic Microporosity (PIMs) and specifically PIM-1, can promote faster growth of the technology of membrane gas separation. However, despite the potential of high free volume polymers such as PIM-1, the decay in their performance over time has inhibited a full exploitation of these materials and this has been the motive for the current project. This research explores a variety of methods to improve the initial and/or the long term performance of PIM-1-based membranes for CO2 separation. Expanding on the current studies on PIM-1-based membranes, it has been tried to focus on novel approaches for fabrication of membranes and development of materials. The explored routes in this research include: in situ PIM-1 synthesis, i.e. integration of PIM-1 synthesis and thin film composite (TFC) membrane fabrication, synthesis of novel crosslinked materials for incorporation into composite membranes based on PIM-1 and grafting reactions to improve the compatibility between the two phases of PIM-1-based composite membranes. In situ synthesis of PIM-1 and highly crosslinked network-PIM-1 was investigated on porous organic and inorganic supports with high thermal and chemical stability. Interfacial polymerisation of an octafluoro and a tetrahydroxy monomer led to promising CO2/CH4 selectivity (~ 15) for the in situ generated highly crosslinked TFC membrane. A highly-crosslinked network variant of PIM-1 with (ultra-)microporous nanoplatelet structure was successfully synthesized here for the first time. A noticeable improvement in the CO2/CH4 mixed-gas (1:1, v:v) separation performance of PIM-1 membranes at 2 atm transmembrane pressure difference and 298 K was obtained upon incorporation of network-PIM-1 nanoplatelets in PIM-1 continuous matrix. Low-crosslink-density (LCD) network-PIM-1 was also synthesised and was incorporated into PIM-1-based Mixed Matrix Membranes (MMMs). Conventional mixing/casting method or grafting PIM-1 onto LCD network-PIM-1 was explored as two separate approaches for the preparation of MMMs. The obtained MMMs based on grafting PIM-1 onto LCD network-PIM-1 showed a noticeable improvement in the aging behaviour, compared to PIM-1 membranes and the conventionally-fabricated MMMs.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:320369
Created by:
Tamaddondar, Marzieh
Created:
2nd August, 2019, 10:26:01
Last modified by:
Tamaddondar, Marzieh
Last modified:
14th August, 2019, 10:40:36

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.