In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

      Understanding how the Bcl-2 interactome contributes to apoptotic sensitivity

      King, Louise

      [Thesis]. Manchester, UK: The University of Manchester; 2019.

      Access to files

      Abstract

      Apoptotic sensitivity between individual cells within a population is varied and the molecular basis of this variation is unclear. Bcl-2 family proteins are the central regulators of apoptosis at mitochondria, with interactions between pro- and anti- apoptotic family members dictating the life or death decision of a cell. Bcl-2 proteins are in equilibrium between mitochondria and cytosol, which shifts to a more mitochondrial state as cells move closer to their apoptotic threshold, termed mitochondrial priming. Heterogeneity in anti-apoptotic Bcl-2 protein dynamics in live cells is predictive of priming within cell populations. What regulates the changes in interactions between pro- and anti-apoptotic proteins in a healthy cell compared to a cell that is primed to die is complex. Using live cell imaging techniques, we show that BH3-mimetics such as ABT-737 do not fully recapitulate the binding of full length BH3 proteins at the outer mitochondrial membrane (OMM). What differs between these binding mechanisms is unknown, but it is likely due to full-length Bcl-2 proteins forming part of larger regulatory complexes at the OMM. Using a proximity Biotin labelling approach to determine what other factors are involved in regulating Bcl-2 protein dynamics outside of the protein family itself reveals that mitochondrial membrane proteins are likely to play a key role. Examining these interactions in more detail will improve our understanding of the causes of apoptotic heterogeneity within cell populations and may enable improved efficacy of BH3-mimetic compounds.

      Keyword(s)

      Apoptosis; Bcl-2

      Bibliographic metadata

      Type of resource:
      Content type:
      Form of thesis:
      Type of submission:
      Degree type:
      Doctor of Philosophy
      Degree programme:
      PhD Molecular Cancer Studies 4yr (CanSci)
      Publication date:
      Location:
      Manchester, UK
      Total pages:
      207
      Abstract:
      Apoptotic sensitivity between individual cells within a population is varied and the molecular basis of this variation is unclear. Bcl-2 family proteins are the central regulators of apoptosis at mitochondria, with interactions between pro- and anti- apoptotic family members dictating the life or death decision of a cell. Bcl-2 proteins are in equilibrium between mitochondria and cytosol, which shifts to a more mitochondrial state as cells move closer to their apoptotic threshold, termed mitochondrial priming. Heterogeneity in anti-apoptotic Bcl-2 protein dynamics in live cells is predictive of priming within cell populations. What regulates the changes in interactions between pro- and anti-apoptotic proteins in a healthy cell compared to a cell that is primed to die is complex. Using live cell imaging techniques, we show that BH3-mimetics such as ABT-737 do not fully recapitulate the binding of full length BH3 proteins at the outer mitochondrial membrane (OMM). What differs between these binding mechanisms is unknown, but it is likely due to full-length Bcl-2 proteins forming part of larger regulatory complexes at the OMM. Using a proximity Biotin labelling approach to determine what other factors are involved in regulating Bcl-2 protein dynamics outside of the protein family itself reveals that mitochondrial membrane proteins are likely to play a key role. Examining these interactions in more detail will improve our understanding of the causes of apoptotic heterogeneity within cell populations and may enable improved efficacy of BH3-mimetic compounds.
      Keyword(s):
      Thesis main supervisor(s):
      Thesis co-supervisor(s):
      Language:
      en

      Institutional metadata

      University researcher(s):
      Academic department(s):

        Record metadata

        Manchester eScholar ID:
        uk-ac-man-scw:322785
        Created by:
        King, Louise
        Created:
        11th December, 2019, 16:08:13
        Last modified by:
        King, Louise
        Last modified:
        23rd December, 2019, 12:17:41

        Can we help?

        The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.