In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Investigation of degradation at halide perovskite surfaces using near-ambient pressure X-ray photoelectron spectroscopy

Ke, Chun-Ren

[Thesis]. Manchester, UK: The University of Manchester; 2019.

Access to files

Abstract

Perovskite solar cell (PSC) is one of the most promising next-generation photovoltaic technologies that can provide low-cost, alternative renewable energy. The main hindrances to the deployment of PSC panels are instability issues. Deterioration in the power conversion efficiency of PSCs over time greatly originates from perovskite light absorbers. Hence, in this thesis, the stability of lead and tin perovskites is investigated. Some key factors to improve the stability of perovskite materials are discussed, including processing, materials, and understanding degradation mechanisms in particular. I introduce a state-of-the-art characterisation technique, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), to investigate the surface stability and degradation process of perovskites. We propose the moisture-induced degradation behaviour of a prototypical halide perovskite, methylammonium lead iodide (MAPI): MAPI decomposes into lead iodide and hydrocarbon chains by releasing hydrogen iodide and ammonia gases. For processing, we find that MAPI films made by aerosol-assisted chemical vapour deposition (AACVD) generally have better stability in humid air than their spin-coated counterparts, which can be attributed to larger grain sizes. Moreover, surface passivation plays a crucial role in the improved stability against moisture. This can be achieved using excess CH3NH3I (to react with a Pb(SCN)2 precursor) or bulky ammonium iodides for MAPI films. Formamidinium (FA)-based mixed-cation mixed-halide perovskites and Cs2SnI6 double perovskite not only have better water resistance but also undergo different degradation routes compared to MAPI. Upon H2O vapour exposure, the FA cation transforms into CH3NH3+ first, whilst the degraded species of Cs2SnI6, CsI, remains at the surface. It will be shown that these insights can pave the way towards stable PSCs.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Physics (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
283
Abstract:
Perovskite solar cell (PSC) is one of the most promising next-generation photovoltaic technologies that can provide low-cost, alternative renewable energy. The main hindrances to the deployment of PSC panels are instability issues. Deterioration in the power conversion efficiency of PSCs over time greatly originates from perovskite light absorbers. Hence, in this thesis, the stability of lead and tin perovskites is investigated. Some key factors to improve the stability of perovskite materials are discussed, including processing, materials, and understanding degradation mechanisms in particular. I introduce a state-of-the-art characterisation technique, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), to investigate the surface stability and degradation process of perovskites. We propose the moisture-induced degradation behaviour of a prototypical halide perovskite, methylammonium lead iodide (MAPI): MAPI decomposes into lead iodide and hydrocarbon chains by releasing hydrogen iodide and ammonia gases. For processing, we find that MAPI films made by aerosol-assisted chemical vapour deposition (AACVD) generally have better stability in humid air than their spin-coated counterparts, which can be attributed to larger grain sizes. Moreover, surface passivation plays a crucial role in the improved stability against moisture. This can be achieved using excess CH3NH3I (to react with a Pb(SCN)2 precursor) or bulky ammonium iodides for MAPI films. Formamidinium (FA)-based mixed-cation mixed-halide perovskites and Cs2SnI6 double perovskite not only have better water resistance but also undergo different degradation routes compared to MAPI. Upon H2O vapour exposure, the FA cation transforms into CH3NH3+ first, whilst the degraded species of Cs2SnI6, CsI, remains at the surface. It will be shown that these insights can pave the way towards stable PSCs.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:322932
Created by:
Ke, Chun-Ren
Created:
20th December, 2019, 11:32:45
Last modified by:
Ke, Chun-Ren
Last modified:
23rd December, 2019, 12:17:47

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.