In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    IMPUTING MISSING DATA FOR POLARIZATION MEASUREMENTS

    Ndiritu, Simon Wanjau

    [Thesis]. Manchester, UK: The University of Manchester; 2020.

    Access to files

    Abstract

    The presence of missing data in polarization measurements from radio telescopes negatively affects both the rotation measure (RM) transfer function and the Fara- day depth spectra from these data. Such gaps in polarization data are mostly caused by flagging of radio frequency interference and their effects worsen as the percentage of missing data increases. In this thesis, I present a novel method for reconstructing missing polarization data based on Gaussian processes (GPs). Gaussian processes are stochastic processes that enable us to encode prior knowl- edge in our models. They also provide a comprehensive way of incorporating and quantifying uncertainties in regression modelling. In addition to imputing miss- ing values, I also demonstrate that Gaussian process modelling can be used for recovering rotation measure values directly. Since standard Gaussian processes are computationally prohibitive, I implement and test a model that is based on a scalable Gaussian implementation called celerite. To train and test these GP models, I use simulated data based on the specifications of the MeerKAT, a precursor instrument to the Square Kilometre Array (SKA). I evaluate the GP- based models by comparing their performance with that of well-tested methods. As the results show, reconstructing missing polarization data using this proba- bilistic method increases the λ 2 -coverage and improves the appearance and the resolution of the Faraday depth spectra.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Master of Science by Research
    Degree programme:
    MSc by Research in Astronomy and Astrophysics
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    136
    Abstract:
    The presence of missing data in polarization measurements from radio telescopes negatively affects both the rotation measure (RM) transfer function and the Fara- day depth spectra from these data. Such gaps in polarization data are mostly caused by flagging of radio frequency interference and their effects worsen as the percentage of missing data increases. In this thesis, I present a novel method for reconstructing missing polarization data based on Gaussian processes (GPs). Gaussian processes are stochastic processes that enable us to encode prior knowl- edge in our models. They also provide a comprehensive way of incorporating and quantifying uncertainties in regression modelling. In addition to imputing miss- ing values, I also demonstrate that Gaussian process modelling can be used for recovering rotation measure values directly. Since standard Gaussian processes are computationally prohibitive, I implement and test a model that is based on a scalable Gaussian implementation called celerite. To train and test these GP models, I use simulated data based on the specifications of the MeerKAT, a precursor instrument to the Square Kilometre Array (SKA). I evaluate the GP- based models by comparing their performance with that of well-tested methods. As the results show, reconstructing missing polarization data using this proba- bilistic method increases the λ 2 -coverage and improves the appearance and the resolution of the Faraday depth spectra.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Funder(s):
    Language:
    en

    Institutional metadata

    University researcher(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:323502
    Created by:
    Ndiritu, Simon
    Created:
    29th January, 2020, 20:59:52
    Last modified by:
    Ndiritu, Simon
    Last modified:
    6th February, 2020, 10:32:19

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.