In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Mixture autoregressive models with applications to heteroskedastic time series

Ravagli, Davide

[Thesis]. Manchester, UK: The University of Manchester; 2021.

Access to files

Abstract

This thesis presents advances in theory and applications of mixture autoregressive (MAR) models in both Bayesian and frequentist frameworks. We improve the Bayesian analysis of mixture autoregressive models in the case of Gaussian components, by use of a sampling algorithm that allows to sample from the complete space of the posterior distribution of the parameters. In addition, we introduce a relabelling algorithm to deal with label switching, and propose density forecasts based on simulated Bayesian samples. We generalise the methodology to MAR models with Student-t mixture components, which includes Gaussian MAR as a limit case. We tackle the challenge of treating the number of degrees of freedom of the Student-t distribution as parameters whose posterior distribution has to be estimated. We propose using mixture vector autoregressive (MVAR) models for optimisation of portfolios of assets. The properties of MVAR models, combined with modern portfolio theory, allow in fact to analytically derive predictive distributions for portfolio returns at any time horizon. We also compare forecasting performance of MVAR models with other commonly used models in this context. We introduce an uncorrelated version of MAR models. By applying a set of linear constraints on the autoregressive parameters, the resulting model represents a direct alternative to GARCH models, as they both assume an uncorrelated but dependent structure for the data. We also propose an application of the uncorrelated MAR to residuals of an econometric model. All the data analysis is implemented in R, the majority of which is available in the package mixAR.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mathematical Sciences
Publication date:
Location:
Manchester, UK
Total pages:
185
Abstract:
This thesis presents advances in theory and applications of mixture autoregressive (MAR) models in both Bayesian and frequentist frameworks. We improve the Bayesian analysis of mixture autoregressive models in the case of Gaussian components, by use of a sampling algorithm that allows to sample from the complete space of the posterior distribution of the parameters. In addition, we introduce a relabelling algorithm to deal with label switching, and propose density forecasts based on simulated Bayesian samples. We generalise the methodology to MAR models with Student-t mixture components, which includes Gaussian MAR as a limit case. We tackle the challenge of treating the number of degrees of freedom of the Student-t distribution as parameters whose posterior distribution has to be estimated. We propose using mixture vector autoregressive (MVAR) models for optimisation of portfolios of assets. The properties of MVAR models, combined with modern portfolio theory, allow in fact to analytically derive predictive distributions for portfolio returns at any time horizon. We also compare forecasting performance of MVAR models with other commonly used models in this context. We introduce an uncorrelated version of MAR models. By applying a set of linear constraints on the autoregressive parameters, the resulting model represents a direct alternative to GARCH models, as they both assume an uncorrelated but dependent structure for the data. We also propose an application of the uncorrelated MAR to residuals of an econometric model. All the data analysis is implemented in R, the majority of which is available in the package mixAR.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:329973
Created by:
Ravagli, Davide
Created:
8th September, 2021, 22:00:47
Last modified by:
Ravagli, Davide
Last modified:
13th October, 2021, 09:00:43

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.