In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

Full-text held externally

University researcher(s)

Academic department(s)

Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster.

Sackton, Timothy B; Kulathinal, Rob J; Bergman, Casey M; Quinlan, Aaron R; Dopman, Erik B; Carneiro, Mauricio; Marth, Gabor T; Hartl, Daniel L; Clark, Andrew G

Genome Biology and Evolution. 2009;1:449-65.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2x coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Published date:
Abbreviated journal title:
ISSN:
Place of publication:
England
Volume:
1
Pagination:
449-65
Digital Object Identifier:
10.1093/gbe/evp048
Pubmed Identifier:
20333214
Access state:
Active

Institutional metadata

University researcher(s):
Academic department(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:86462
Created by:
Bergman, Casey
Created:
15th July, 2010, 14:20:14
Last modified by:
Bergman, Casey
Last modified:
6th March, 2016, 19:32:54

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.