In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    Lysophosphatidylcholine and Endothelial Cell Signalling

    Heard, Caroline

    [Thesis]. Manchester, UK: The University of Manchester; 2010.

    Access to files

    Abstract

    Lysophosphatidylcholine (LPC) is a by product of phospholipid metabolism, that under physiological conditions is maintained at a low level. However, through an enhanced degradation of phospholipids and/or a reduced catabolism, LPC accumulates in the plasma and fluids of patients with disorders underscored by inflammation – such as atherosclerosis, diabetes, ischaemia and epilepsy. Previous studies have demonstrated LPC to possess vasoactive properties, able to both induce and inhibit vasodilation. Furthermore, a variety of proteins are sensitive to LPC, including non-selective cation (NSC) channels and Ca2+-activated K+ (KCa) channels. These channels are intimately associated with the maintenance and regulation of vascular tone. The aim of this study was to elucidate the mechanisms underlying the vascular effect of LPC.Aortic segments were constricted with phenylephrine and exposed to cumulative concentrations of LPC, with an ensuing endothelium-dependent, concentration-dependent vasodilation. Inhibitors of nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) abolished LPC-induced responses, implicating nitric oxide (NO) as the mediator. Two cation fluxes were implicated in the dilator activity of LPC - Ca2+ and K+. NSC channel antagonists and reduced extracellular Ca2+ concentration attenuated dilation and reduced the Ca2+ signal activated in isolated rat aortic endothelial cells (RAEC) by LPC, implicating endothelial Ca2+ influx in the response. In addition, LPC also evoked a robust hyperpolarisation of isolated RAEC membrane potential. The K+ channel antagonists TEA+, TRAM-34 and apamin, inhibitors of KCa channels, attenuated both the LPC-induced dilation and RAEC membrane hyperpolarisation, highlighting their potential role in mediating both these processes.HEK293 cells, which lack many of the channels and signalling pathways possessed by other cells, mimicked RAEC in their sensitivity to LPC, generating robust elevations of intracellular Ca2+ when exposed to this lysolipid. Likewise, membrane hyperpolarisations were also observed in HEK293 cells, however, these only occurred when cells expressed recombinant KCa channels. This suggests that KCa channel activation is dependent upon Ca2+ influx, not vice versa.Phospholipase C (PLC) inhibitor U73122, attenuated LPC-induced hyperpolarisation, raising the question as to the possible involvement of G-protein coupled receptors in the bioactivity of LPC. Alternately, LPC might initiate PLC activity, and subsequent NSC channel opening and Ca2+ influx via a perturbation of membrane integrity, like certain local anaesthetics. It is proposed that endothelial NSC-channel activation by LPC initiates endothelial cell signalling, with concomitant activation of Ca2+-sensitive proteins such as NOS, to bring about vasodilation, and KCa channels, which modulate membrane potential and in turn the driving force for Ca2+ entry.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Physiology
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    205
    Abstract:
    Lysophosphatidylcholine (LPC) is a by product of phospholipid metabolism, that under physiological conditions is maintained at a low level. However, through an enhanced degradation of phospholipids and/or a reduced catabolism, LPC accumulates in the plasma and fluids of patients with disorders underscored by inflammation – such as atherosclerosis, diabetes, ischaemia and epilepsy. Previous studies have demonstrated LPC to possess vasoactive properties, able to both induce and inhibit vasodilation. Furthermore, a variety of proteins are sensitive to LPC, including non-selective cation (NSC) channels and Ca2+-activated K+ (KCa) channels. These channels are intimately associated with the maintenance and regulation of vascular tone. The aim of this study was to elucidate the mechanisms underlying the vascular effect of LPC.Aortic segments were constricted with phenylephrine and exposed to cumulative concentrations of LPC, with an ensuing endothelium-dependent, concentration-dependent vasodilation. Inhibitors of nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) abolished LPC-induced responses, implicating nitric oxide (NO) as the mediator. Two cation fluxes were implicated in the dilator activity of LPC - Ca2+ and K+. NSC channel antagonists and reduced extracellular Ca2+ concentration attenuated dilation and reduced the Ca2+ signal activated in isolated rat aortic endothelial cells (RAEC) by LPC, implicating endothelial Ca2+ influx in the response. In addition, LPC also evoked a robust hyperpolarisation of isolated RAEC membrane potential. The K+ channel antagonists TEA+, TRAM-34 and apamin, inhibitors of KCa channels, attenuated both the LPC-induced dilation and RAEC membrane hyperpolarisation, highlighting their potential role in mediating both these processes.HEK293 cells, which lack many of the channels and signalling pathways possessed by other cells, mimicked RAEC in their sensitivity to LPC, generating robust elevations of intracellular Ca2+ when exposed to this lysolipid. Likewise, membrane hyperpolarisations were also observed in HEK293 cells, however, these only occurred when cells expressed recombinant KCa channels. This suggests that KCa channel activation is dependent upon Ca2+ influx, not vice versa.Phospholipase C (PLC) inhibitor U73122, attenuated LPC-induced hyperpolarisation, raising the question as to the possible involvement of G-protein coupled receptors in the bioactivity of LPC. Alternately, LPC might initiate PLC activity, and subsequent NSC channel opening and Ca2+ influx via a perturbation of membrane integrity, like certain local anaesthetics. It is proposed that endothelial NSC-channel activation by LPC initiates endothelial cell signalling, with concomitant activation of Ca2+-sensitive proteins such as NOS, to bring about vasodilation, and KCa channels, which modulate membrane potential and in turn the driving force for Ca2+ entry.
    Thesis co-supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:94673
    Created by:
    Heard, Caroline
    Created:
    15th November, 2010, 12:52:49
    Last modified by:
    Heard, Caroline
    Last modified:
    2nd May, 2018, 13:49:14

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.