Skip to navigation | Skip to main content | Skip to footer
Menu Search the University of Manchester siteSearch

Alternatively, use our A–Z index

Professor Chris Klingenberg (Lic Phil Nat, PhD) - postgraduate opportunities

(BBSRC DTP Studentship) Integrating morphology, fossils and molecules to evaluate major evolutionary events

Recent advances have provided a wealth of molecular data with which to build phylogenies and study evolutionary processes. Morphology, however, remains fundamental for reconstructing how organisms have changed and evolved through time. Indeed, it is usually the only kind of data yielded by fossils. However, a large gap exists between genomic and phenomic data limiting our ability to use either to evaluate evolutionary hypotheses. For example, which aspects of morphology are in accordance with molecular data and can be used to reliably reconstruct major evolutionary events? Do genetic innovations such as gene and genome duplication events match morphological innovation, integration or radiation? This project aims to address these outstanding questions by collating and integrating genetic, morphological, and morphometric datasets from across the tree of life. The combined datasets will not only provide a tool kit with which to better reconstruct morphological phylogenies but also to better evaluate the nature and tempo of evolutionary processes.


  • Dickerson, Robertson 2012. On the origins of Mendelian disease genes in man: the impact of gene duplication. Mol Biol Evol, 29:61-9.
  • Klingenberg and Marugán-Lobón 2013. Evolutionary Covariation in Geometric Morphometric Data: Analyzing Integration, Modularity and Allometry in a Phylogenetic Context. Systematic Biology, 62:591-610.
  • Sansom and Wills 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3:2545.

Morphological integration, modularity and evolution of organismal shapes

The shapes of organisms are integrated so that functionally and developmentally interacting parts vary together. Morphological integration is often clearly structured, so that there are modules that are tightly integrated internally and relatively independent of other modules. Such integration and modularity is thought to be the result of adaptive evolution and, in turn, it also influences the potential for further evolution. My lab uses the methods of geometric morphometrics to address various questions concerning integration and modularity of shapes in diverse study systems including fly wings and mammalian skulls. We also have developed new methods for examining patterns of integration, for testing hypotheses of modularity and for inferring the developmental basis of morphological integration.


Your project will expand on this work. Current challenges in the field concern the evolution of integration and its genetic basis. Accordingly, your project could either use a comparative approach or the methods of quantitative genetics. Depending on these choices, your research could be lab-based or primarily use museum collections. It is also possible to include a component of methods development into the project in addition to the empirical work. The precise topic of your project will be decided after discussion, and so it is possible to take into account your previous background and experience as well as your interests and personal preferences.


  • Klingenberg, C. P. 2009. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a-priori hypotheses. Evolution & Development 11:405–421.
  • Klingenberg, C. P., and N. A. Gidaszewski. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology 59:245–261.
  • Klingenberg, C. P. 2010. Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics 11:623–635.
  • Klingenberg, C. P., S. Duttke, S. Whelan, and M. Kim. 2012. Developmental plasticity, morphological variation and evolvability: a multilevel analysis of morphometric integration in the shape of compound leaves. Journal of Evolutionary Biology 25:115–129.
  • Martínez-Abadías, N., M. Esparza, T. Sjøvold, R. González-José, M. Santos, M. Hernández, and C. P. Klingenberg. 2012. Pervasive genetic integration directs the evolution of human skull shape. Evolution 66:1010–1023.


Wing-skeleton morphometrics and flight in birds

The central adaptation of birds is flight and it is the dominant selection pressure driving their morphology. Wing morphology has evolved in response to flight behaviour, which is influenced by a species’ ecology, and the external wing-morphology of extant birds is reflected by their wing-skeleton and vice versa. For example, in a hummingbird, emphasis is on the primary feathers to facilitate hovering and consequently, the hand-wing is relatively lengthened. In soaring birds such as an albatross, the part of the forelimb that supports the secondary feathers is relatively long and conversely the hand-wing relatively short. There is also evidence showing that wing-kinematics is correlated with wing-skeletal anatomy. Therefore, by quantifying wing-skeleton shape, it should be possible to predict overall wing-shape, wing-kinematics and from these, flight behaviour.


The aim of the project will be to determine the relationships between the wing-skeleton morphology, wing-kinematics, and wing-shape of extant birds. This data may then be extrapolated to hypothesise the wing-shape and kinematics of fossil birds. The main techniques used will be landmark-based geometric morphometrics for quantifying wing-skeleton morphology and high-speed video for quantifying wing-kinematics.


  • Nudds RL, Dyke GJ, & Rayner JMV (2004) Forelimb proportions and the evolutionary radiation of neornithes. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 271:S324-S327.
  • Nudds RL, Dyke GJ, & Rayner JMV (2007) Avian brachial index and wing kinematics: putting movement back into bones. Journal of Zoology 272(2):218-226.
  • Rayner JMV (1988) Form and function in avian flight. Current Ornithology, ed Johnston RF (Plenum Press, New York), Vol 5, pp 1-66.
  • Rayner JMV & Dyke GJ (2002) Origins and evolution of diversity in the avian wing. Vertebrate Biomechanics and Evolution, eds Bels V, Gasc JP, & Casinos A (Bios Scientific Publishers, Oxford), pp 297-317.