MSc Advanced Electrical Power Systems Engineering / Course details

Year of entry: 2024

Course description

Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. This course will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

First semester

In the first semester you learn how power systems are designed and operated. This involves studying not only the characteristics of the various components (generators, lines, cables, transformers and power electronics devices) but also how these components interact. Through lectures and computer based exercises you become familiar with power flow and fault calculations and you learn how the techniques used to study the behaviour of large systems. Experiments in our high voltage laboratory give you an appreciation for the challenges of insulation co-ordination.

Second semester

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

Prior to your summer break a preliminary study and the outline of your MSc dissertation project is completed, this is fully developed throughout the second year of the course.

The yearlong enhanced individual research provides you great opportunities to develop advanced research skills and to explore in depth some of the topics discussed during the course. This includes training in research methods, and advanced simulation and experimental techniques in power systems and high voltage engineering as well as academic paper writing and poster and paper presentation.

Aims

  • Provide an advanced education in electrical power engineering.
  • Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
  • Give a sound understanding of the principles and techniques of electrical power engineering.
  • Give a broad knowledge of the issues and problems faced by electrical power engineers.
  • Give a solid working knowledge of the techniques used to solve these problems.
  • Educate students with advanced research skills necessary to address current and future technological advancements.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of coursework only.

The enhanced research project is assessed on the basis of a research poster, an extended abstract, a research papers and a dissertation of about 70 pages.

Course unit details

Course units typically include:

  • Electrical Power Fundamentals
  • Analysis of Electrical Power and Energy Conversion Systems
  • Power System Plant, Asset Management and Condition Monitoring
  • Power System Operation and Economics
  • Power System Dynamics and Quality of Supply
  • Power System Protection
  • Smart Grids and Sustainable Electricity Systems
  • Techniques for Research and Industry

Course unit list

The course unit details given below are subject to change, and are the latest example of the curriculum available on this course of study.

TitleCodeCredit ratingMandatory/optional
Dissertation EEEN60070 60 Mandatory
Electrical Energy Systems EEEN60302 15 Mandatory
Power System Operation and Economics EEEN60321 15 Mandatory
Power System Dynamics & Quality of Supply EEEN60342 15 Mandatory
Smart Grids & Sustainable Electricity Systems EEEN60352 15 Mandatory
Power Syst Plant, Asset Management and Condition Monitoring EEEN60371 15 Mandatory
Analysis of Electrical Power and Energy Conversion Systems EEEN60631 15 Mandatory
Extended Dissertation Project EEEN60770 120 Mandatory
Techniques for Research and Industry EEEN61352 15 Mandatory
Power System Protection EEEN64422 15 Mandatory

Facilities

Excellent facilities

With access to an  extensive range of leading facilities , you will get hands-on with industry-standard equipment - improving your knowledge and skills, and preparing you for work post-graduation. Our flagship facilities include the  High Voltage Lab  and  Photon Science Institute .

The future of learning in Manchester  

Our Home for Engineering and Materials Science is transforming the way our students study, research and shape the world forever. Now, more than ever, is the time to study at the University of Manchester. 

At the heart of the building’s design is a desire to bring together all disciplines, in one connected and dynamic environment. The space supports a variety of teaching and learning styles, through blended lecture theatres, multi-purpose study spaces and over 250 state-of-the-art laboratories. There is also a range of technical spaces to help encourage students to shape their own learning environment.  

We want our facilities to show ambition as well as recognise the real-world challenges that students will face in addressing some of the most pressing issues of our time. Our Home for Engineering and Materials Science boasts some of the most unique, industry-leading equipment and instrumentation in the sector to meet today’s requirements and those of the future.  

Explore  Our Home for Engineering and Material Science .  

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: dass@manchester.ac.uk