MEng Electrical and Electronic Engineering / Course details

Year of entry: 2020

Course unit details:
Nanoelectronic Devices and Nanomaterials

Unit code EEEN40053
Credit rating 15
Unit level Level 4
Teaching period(s) Semester 1
Offered by School of Electrical and Electronic Engineering
Available as a free choice unit? No

Pre/co-requisites

Unit title Unit code Requirement type Description
Electronic Materials EEEN10022 Pre-Requisite Compulsory

Aims

The course unit aims to:

·        Introduce materials and devices used in state-of-the art computing and communication systems, such as advanced CMOS devices that operate at the scaling limit

·        Explain nanoscale devices exploiting quantum mechanical effects due to e.g. low dimensionality

·        Introduce graphene and 2D-materials for future electronics

Learning outcomes

Students will be able to:

Knowledge and understanding

·        Understand the concept of band diagrams

·        Explain how dimensionality affects the electrical and optical properties of solids

·        Explain the principle of tunnelling and how it affects nanoelectronic devices

·        Describe advanced CMOS devices and HEMTs

·        Explain manufacturing techniques employed for nanoscale devices

·        Describe the properties of graphene/2D-materials, their difference to conventional semiconductors and devices based on these

Intellectual skills

·        Apply basic quantum mechanics to describe the effects of dimensionality on solids

·        Translating the physical properties of low-dimensional systems into a device context

·        Bringing manufacturing techniques into context and apply them to derive process flows for device fabrication

Transferable skills and personal qualities

·        Ability to work on conceptually demanding topics

Assessment methods

Method Weight
Other 10%
Written exam 70%
Report 20%

Study hours

Scheduled activity hours
Lectures 30
Tutorials 6
Work based learning 12
Independent study hours
Independent study 102

Teaching staff

Staff member Role
Tim Echtermeyer Unit coordinator

Return to course details