This course may be available through clearing

If you already have your exam results, meet the entry requirements and hold no offers, then you may be able to apply to this course now.

Contact the admissions team

If you're waiting for your results, then sign up to our clearing alerts to get all the information you need ahead of results day.

Sign up now

MEng Electrical and Electronic Engineering / Course details

Year of entry: 2020

Coronavirus information for applicants and offer-holders

For the latest updates on how coronavirus will affect applicants and offer-holders, you can visit our FAQs.

Read our latest coronavirus information

Holding an offer for 2020 entry? Visit our dedicated offer-holders page.

Information for offer-holders

Course unit details:
Nanoelectronic Devices and Nanomaterials

Unit code EEEN40053
Credit rating 15
Unit level Level 4
Teaching period(s) Semester 1
Offered by School of Electrical and Electronic Engineering
Available as a free choice unit? No

Pre/co-requisites

Unit title Unit code Requirement type Description
Electronic Materials EEEN10022 Pre-Requisite Compulsory

Aims

The course unit aims to:

·        Introduce materials and devices used in state-of-the art computing and communication systems, such as advanced CMOS devices that operate at the scaling limit

·        Explain nanoscale devices exploiting quantum mechanical effects due to e.g. low dimensionality

·        Introduce graphene and 2D-materials for future electronics

Learning outcomes

Students will be able to:

Knowledge and understanding

·        Understand the concept of band diagrams

·        Explain how dimensionality affects the electrical and optical properties of solids

·        Explain the principle of tunnelling and how it affects nanoelectronic devices

·        Describe advanced CMOS devices and HEMTs

·        Explain manufacturing techniques employed for nanoscale devices

·        Describe the properties of graphene/2D-materials, their difference to conventional semiconductors and devices based on these

Intellectual skills

·        Apply basic quantum mechanics to describe the effects of dimensionality on solids

·        Translating the physical properties of low-dimensional systems into a device context

·        Bringing manufacturing techniques into context and apply them to derive process flows for device fabrication

Transferable skills and personal qualities

·        Ability to work on conceptually demanding topics

Assessment methods

Method Weight
Other 10%
Written exam 70%
Report 20%

Study hours

Scheduled activity hours
Lectures 30
Tutorials 6
Work based learning 12
Independent study hours
Independent study 102

Teaching staff

Staff member Role
Tim Echtermeyer Unit coordinator

Return to course details