Coronavirus information for applicants and offer-holders

We understand that prospective students and offer-holders may have concerns about the ongoing coronavirus outbreak. The University is following the advice from Universities UK, Public Health England and the Foreign and Commonwealth Office.

# BSc Mathematics with Financial Mathematics / Course details

Year of entry: 2021

## Course unit details:Statistical Methods

Unit code MATH20802 10 Level 2 Semester 2 Department of Mathematics No

### Overview

This module provides students with the methodological foundations in model-based statistical learning, in particular likelihood estimation and inference and simple linear regression models. The theoretical and methodological discussions are complemented by practical computer application.

This module thus links the core level 1 module (Introduction to Statistics) and the optional theoretical and applied level 3 modules (Statistical Modelling, Statistical Inference , Extreme Values and Financial Risk, Time Series, Multivariate Statistics and Machine Learning, Medical Statistics).

### Pre/co-requisites

Unit title Unit code Requirement type Description
Probability 1 MATH10141 Pre-Requisite Compulsory
Probability 2 MATH20701 Pre-Requisite Compulsory
Introduction to Statistics MATH10282 Pre-Requisite Compulsory

Desirable
• Basic knowledge of the R statistical programming language

### Aims

• to introduce the general principles of likelihood-based inference and testing for general models (i.e. for both discrete and continuous distributions),
• to provide an introduction to linear regression models,
• to offer a first overview of Bayesian statistical inference, and
• to demonstrate corresponding computational procedures in R.

### Learning outcomes

On successful completion of the course students will be able to:

• apply model-based approaches in statistical data analysis;
• derive maximum likelihood estimates and compute corresponding confidence intervals;
• perform statistical testing from a likelihood perspective;
• analyse and fit linear regression models;
• address simple inference problems from a Bayesian point of view;
• use R to apply these techniques on actual data.

### Syllabus

• Likelihood-based inference: likelihood function, score function, maximum likelihood estimators (MLE), Fisher information, likelihood intervals, invariance principle, relationship to ordinary least-squares estimation (OLS). [6]
• Generalised likelihood ratio tests: one and two sample problems, most powerful tests (Neyman Pearson lemma). [4]
• Linear regression: standard linear regression model, OLS/MLE estimation of regression coefficients and their variances, coefficient of determination, prediction intervals, testing of regression coefficients, variable selection. [6]
• Bayesian learning: Bayes‘ theorem, prior and posterior probabilities, information update, credible intervals, properties of Bayes‘ estimators, shrinkage effect, Bayes factor. [6]

### Assessment methods

Method Weight
Other 20%
Written exam 80%
• Coursework (1 in-class exam): weighting 20%
• End of semester examination: weighting 80%

### Feedback methods

Feedback tutorials will provide an opportunity for students' work to be discussed and provide feedback on their understanding. The in-class test also provides an opportunity for students to receive feedback. Students can also get feedback on their understanding directly from the lecturer, for example during the lecturer's office hour.

• Faraway, J. J. 2015. Linear Models with R (second edition). Chapman and Hall/CRC. (recommended)

Held, L, and Bove, D.S. 2014.  Applied Statistical Inference. Springer. (recommended)

Hoff, P. 2009. A first course in Bayesian Statistics.  Springer. (recommended)

### Study hours

Scheduled activity hours
Lectures 24
Practical classes & workshops 3
Tutorials 7
Independent study hours
Independent study 66

### Teaching staff

Staff member Role
Korbinian Strimmer Unit coordinator