
- UCAS course code
- H613
- UCAS institution code
- M20
BEng Electronic Engineering with Industrial Experience / Course details
Year of entry: 2023
- View tabs
- View full page
Course description
Turn on your career in electronic engineering at Manchester, a university with a prestigious history in the subject and a bright focus on the future. We're home to one of the largest departments dedicated to the subject in the UK, have fantastic links with industry, and have taught the discipline here since 1905.
Both today and in years to come we look to electronics to provide answers for complex problems. Take the mobile phone: a very sophisticated computer and communications system that links to a worldwide network of antennas allowing it to connect to any other mobile or landline, as well as the internet. Or the digital camera, at the heart of which is a sophisticated electronic device containing millions of individual light level detectors.
We live in an information age. Complex systems require digital signal processing (for images, audio and other signals), and technological developments in communications include concurrent processing (to allow the manipulation of the massive amounts of data), data networking and digital communication systems for both local distribution and across the internet. Explore these themes and acquire the skills to take them forward at Manchester.
Spending a year in industry will not only develop your business, team working and transferable skills - all highly sought-after by employers - it will also highlight the broad range of careers on offer to you and guide your choice of subject options. You'll place yourself in a great position to move your career forward.
Aims
- You will learn to design, build, and operate analogue and digital circuits to create smart devices, autonomous systems, and a new generation of electronic devices.
- You will be taught by academics working on the cutting-edge of research, helping to solve the world's biggest challenges.
- We will provide ample opportunity for practical application and project work. These are strong themes throughout our course.
- You will gain first-hand industrial experience at a recognised company, acquiring the knowledge and skills to take your learning to the next level.
Special features
Excellent facilities
Explore Our Home for Engineering and Materials.
With an extensive range of leading facilities , you'll get hands-on with industry-standard equipment - improving your knowledge and skills, and preparing you for work post-graduation. Our flagship facilities include the High Voltage Lab and Photon Science Institute .
Paid industrial placement opportunity
The paid industrial placement will increase your depth and breadth of electronic engineering knowledge, and provide valuable practical work experience strengthening your expertise and your CV.
Regular, close support
During the first year, you'll be supported by unit-specific tutors, who hold weekly small-group sessions to discuss questions related to your course. Additionally, you'll have the opportunity to engage with our award-winning Peer Assisted Study Session scheme which allows you to interact with 2nd and 3rd Year students. You will also be assigned an Academic Advisor, who will support you in terms of your academic progression and career development.
Options and flexibility
The first three semesters of our undergraduate courses share the same content. This gives you the opportunity to transfer between electrical and electronic, electronic and mechatronic engineering up until halfway through your second year.
Teaching and learning
In your first year of study there is approximately a 50:50 split between your contact time and independent study; about the same as when studying for A-levels.
In subsequent years this split changes to a greater amount of independent learning, with the split being approximately 30:70 in the third year. This does not mean that less help is available; our staff are here to help.
Contact time could be in a lecture, example class, tutorial, laboratory class and sometimes may be online (email/e-learning/web blog etc). All of these activities enable you to interact with us to ensure you have the best possible learning experience.
The course contains strong practical elements: a year-long practical build project of an electronic device in Year 1, a year-long practical build project of an autonomous embedded system in Year 2, and a year-long practical research project in Year 3. During your year in industry, an academic supervisor will ensure that your activity is strongly related with your degree and you will have the opportunity to spend a year working on engineering projects in an industrial setting.
Coursework and assessment
Course unit details
Overview of the year in industry
The year in industry provides a valuable opportunity to experience work as an engineer in real world situations within a commercial UK based company. Students will have the opportunity to contribute to engineering products that will influence the future development of society, and undertaking a year in industry increases the likelihood of securing a job offer after graduation.
Aims of year in industry
- Provide practical experience of engineering, which may contribute to the engineering practice qualification for IET membership
- Provide the experience of holding responsibilities associated with industrial employment
- Provide the opportunity to develop and enhance key soft skills required to work in a team structure
- Provide the opportunity to consolidate a technical education with that of the engineering environment
- Provide a platform to encourage the transformation from student to engineer
Learning outcomes
The year in industry has been designed taking into consideration the requirements of the Institution of Engineering and Technology (IET). This year may be included as a part of the years of experience that together with the academic qualifications allow students to become Chartered Engineers (CEng).
There are four outcomes we want to develop:
- The ability to understand and analyse engineering challenges.
- The ability to apply engineering techniques to industrial challenges.
- To provide technical or commercial guidance, knowledge-sharing or leadership to peers or assistants.
- To demonstrate effective interpersonal presentation and technical writing skills.
Teaching and learning methods
Twice during the period in industry you will be visited by your Academic Supervisor. The visits allows us to confirm that the learning outcomes are being met and that you are happy within your placement.
Assessment methods
Assessment takes place throughout the placement. You are required to submit a preparatory report and deliver a preparatory presentation, and also a final report and final presentation.
Your academic tutor will complete two visits and supply feedback on your submissions.
Final Presentation: 30%
Final Report: 70%
Course content for year 1
Course units for year 1
The course unit details given below are subject to change, and are the latest example of the curriculum available on this course of study.
Title | Code | Credit rating | Mandatory/optional |
---|---|---|---|
Electronic Materials | EEEN10021 | 10 | Mandatory |
Circuit Analysis | EEEN10121 | 10 | Mandatory |
Digital System Design I | EEEN10131 | 10 | Mandatory |
Electronics Project | EEEN10141 | 10 | Mandatory |
Measurements & Analytical Software | EEEN10151 | 10 | Mandatory |
Microcontroller Engineering I | EEEN10202 | 10 | Mandatory |
Energy Transport and Conversion | EEEN10212 | 10 | Mandatory |
Electromagnetic Fields | EEEN10222 | 10 | Mandatory |
Electronic Circuit Design I | EEEN10232 | 10 | Mandatory |
C Programming | EEEN10242 | 10 | Mandatory |
Displaying 10 of 12 course units for year 1 | |||
Display all course units for year 1 |
Course content for year 2
Course units for year 2
The course unit details given below are subject to change, and are the latest example of the curriculum available on this course of study.
Title | Code | Credit rating | Mandatory/optional |
---|---|---|---|
Microcontroller Engineering II | EEEN20011 | 10 | Mandatory |
Engineering Management | EEEN20051 | 10 | Mandatory |
Digital Systems Design II | EEEN20121 | 10 | Mandatory |
Signals and Systems | EEEN20131 | 10 | Mandatory |
Electronic Circuit Design II | EEEN20222 | 10 | Mandatory |
Microelectronic Components | EEEN20232 | 10 | Mandatory |
Control Systems I | EEEN20252 | 10 | Mandatory |
Analogue and Digital Communications | EEEN20262 | 10 | Mandatory |
VLSI Design | EEEN20272 | 10 | Mandatory |
Embedded Systems Project | EEEN21000 | 20 | Mandatory |
Displaying 10 of 11 course units for year 2 | |||
Display all course units for year 2 |
Course content for year 3
Course units for year 3
The course unit details given below are subject to change, and are the latest example of the curriculum available on this course of study.
Title | Code | Credit rating | Mandatory/optional |
---|---|---|---|
High Speed Digital and Mixed Signal Design | EEEN30171 | 10 | Mandatory |
Digital Signal Processing | EEEN30201 | 10 | Mandatory |
Computer Systems Architecture | EEEN30222 | 10 | Mandatory |
Current Trends in Optical Devices | EEEN30272 | 10 | Mandatory |
Individual Project | EEEN30330 | 30 | Mandatory |
Commercial Technology Development | MCEL30102 | 10 | Mandatory |
Numerical Analysis | EEEN30101 | 10 | Optional |
Data Networking | EEEN30111 | 10 | Optional |
Concurrent Systems | EEEN30141 | 10 | Optional |
Digital Mobile Communications | EEEN30161 | 10 | Optional |
Displaying 10 of 22 course units for year 3 | |||
Display all course units for year 3 |
Scholarships and bursaries
For information about scholarships and bursaries please visit our undergraduate student finance pages and our Department funding pages .
What our students say
Find out what it's like to study at Manchester by visiting the Department of Electrical and Electronic Engineering blog .
Facilities
Come to our Home of Engineering and Materials - a place like no other. This is where engineers, material scientists and fashion students collaborate, innovate and make their mark on the world. Unleash your potential in our creative, academic playground that signals the evolution of a proud history of innovation spanning almost 200 years.
In this very special place, we’re ripping up the rule book, offering you a truly innovative teaching and learning experience. As well as our creative classrooms, you’ll also have access to world-leading sustainable research facilities in our new buildings.
Our variety of spaces allows for greater collaboration for all our students, and it is the place to connect and tackle real-life challenges together. So, a chemical engineer could be sat alongside a materials scientist working on clean water, or bump into a fashion student developing their own sustainable brand, or an aerospace engineer sending a rocket into space. It is a place like no other for interactions and one of the biggest communities of engineers and materials scientists in any University in the world.
Dive into a world of possibilities, whether you are interested in aerospace, robotics, or sustainable fashion, there’s a home for you here.
Explore Our Home for Engineering and Material Science .
What's more, our strong, ever-growing links with industry not only help to inform our courses, but also boost our excellent teaching and research facilities. These include:
- National Instruments Undergraduate Teaching Laboratory
- High Voltage Lab
- Rolls-Royce University Technology Centre
- Oxford Instruments VG Semicon Molecular Beam Epitaxy facility
- National Graphene Institute
- Dalton Nuclear Institute
The University of Manchester also offers extensive library and online services , helping you get the most out of your studies.