In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Efficient ''black-box'' multigrid solvers for convection-dominated problems

Rees, Glyn Owen

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

The main objective of this project is to develop a ``black-box'' multigrid preconditioner for the iterative solution of finite element discretisations of the convection-diffusion equation with dominant convection. This equation can be considered a stand alone scalar problem or as part of a more complex system of partial differential equations, such as the Navier-Stokes equations. The project will focus on the stand alone scalar problem. Multigrid is considered an optimal preconditioner for scalar elliptic problems. This strategy can also be used for convection-diffusion problems, however an appropriate robust smoother needs to be developed to achieve mesh-independent convergence. The focus of the thesis is on the development of such a smoother. In this context a novel smoother is developed referred to as truncated incomplete factorisation (tILU) smoother. In terms of computational complexity and memory requirements, the smoother is considerably less expensive than the standard ILU(0) smoother. At the same time, it exhibits the same robustness as ILU(0) with respect to the problem and discretisation parameters. The new smoother significantly outperforms the standard damped Jacobi smoother and is a competitor to the Gauss-Seidel smoother (and in a number of important cases tILU outperforms the Gauss-Seidel smoother). The new smoother depends on a single parameter (the truncation ratio). The project obtains a default value for this parameter and demonstrated the robust performance of the smoother on a broad range of problems. Therefore, the new smoothing method can be regarded as ``black-box''. Furthermore, the new smoother does not require any particular ordering of the nodes, which is a prerequisite for many robust smoothers developed for convection-dominated convection-diffusion problems. To test the effectiveness of the preconditioning methodology, we consider a number of model problems (in both 2D and 3D) including uniform and complex (recirculating) convection fields discretised by uniform, stretched and adaptively refined grids. The new multigrid preconditioner within block preconditioning of the Navier-Stokes equations was also tested. The numerical results gained during the investigation confirm that tILU is a scalable, robust smoother for both geometric and algebraic multigrid. Also, comprehensive tests show that the tILU smoother is a competitive method.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
204
Abstract:
The main objective of this project is to develop a ``black-box'' multigrid preconditioner for the iterative solution of finite element discretisations of the convection-diffusion equation with dominant convection. This equation can be considered a stand alone scalar problem or as part of a more complex system of partial differential equations, such as the Navier-Stokes equations. The project will focus on the stand alone scalar problem. Multigrid is considered an optimal preconditioner for scalar elliptic problems. This strategy can also be used for convection-diffusion problems, however an appropriate robust smoother needs to be developed to achieve mesh-independent convergence. The focus of the thesis is on the development of such a smoother. In this context a novel smoother is developed referred to as truncated incomplete factorisation (tILU) smoother. In terms of computational complexity and memory requirements, the smoother is considerably less expensive than the standard ILU(0) smoother. At the same time, it exhibits the same robustness as ILU(0) with respect to the problem and discretisation parameters. The new smoother significantly outperforms the standard damped Jacobi smoother and is a competitor to the Gauss-Seidel smoother (and in a number of important cases tILU outperforms the Gauss-Seidel smoother). The new smoother depends on a single parameter (the truncation ratio). The project obtains a default value for this parameter and demonstrated the robust performance of the smoother on a broad range of problems. Therefore, the new smoothing method can be regarded as ``black-box''. Furthermore, the new smoother does not require any particular ordering of the nodes, which is a prerequisite for many robust smoothers developed for convection-dominated convection-diffusion problems. To test the effectiveness of the preconditioning methodology, we consider a number of model problems (in both 2D and 3D) including uniform and complex (recirculating) convection fields discretised by uniform, stretched and adaptively refined grids. The new multigrid preconditioner within block preconditioning of the Navier-Stokes equations was also tested. The numerical results gained during the investigation confirm that tILU is a scalable, robust smoother for both geometric and algebraic multigrid. Also, comprehensive tests show that the tILU smoother is a competitive method.
Thesis main supervisor(s):
Thesis advisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:131408
Created by:
Rees, Glyn
Created:
22nd September, 2011, 19:40:04
Last modified by:
Rees, Glyn
Last modified:
11th April, 2012, 18:17:50

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.