In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Enzymatic routes to generic building blocks leading to chiral tertiary alcohols

March, Andrea

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

AbstractTertiary alcohols are a common functional group in many natural products, pharmaceuticals and agrochemicals. The ability to produce highly enantiomerically pure tertiary alcohols is therefore an important goal in synthetic chemistry.The synthesis of chiral tertiary alcohol precursors has been achieved via enzymatic desymmetrisation with the lipase Amano L, AK to generate (S)-(2-(hydroxymethyl)oxiran-2-yl)methyl acetate in 42% isolated yield and 97% enantiomeric excess. The reaction was also attempted with an immobilised lipase from R. miehei yielding the product in 82-90% yield and up to 89% ee. The enantioselective ring-opening of the epoxide using different amines has been developed in high yields generating enantiomerically pure β-amino tertiary alcohol products. However, an undesired intramolecular migration of the acetyl group was observed during the epoxide opening with aliphatic primary amines resulting in prochiral triol products. To avoid such an intramolecular migration a TBS-protected derivative has been used to prepare the tertiary alcohol products with primary amines in good yields (43%-83%), without any loss of enantiomeric excess of the formed ‘pseudo’-enantiomer .(S)-(2-(hydroxymethyl)oxiran-2-yl)methyl acetate has the potential to generate a large diversity of compounds; this reagent was also used as the starting material to generate azetidines in high yields.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry
Publication date:
Location:
Manchester, UK
Total pages:
177
Abstract:
AbstractTertiary alcohols are a common functional group in many natural products, pharmaceuticals and agrochemicals. The ability to produce highly enantiomerically pure tertiary alcohols is therefore an important goal in synthetic chemistry.The synthesis of chiral tertiary alcohol precursors has been achieved via enzymatic desymmetrisation with the lipase Amano L, AK to generate (S)-(2-(hydroxymethyl)oxiran-2-yl)methyl acetate in 42% isolated yield and 97% enantiomeric excess. The reaction was also attempted with an immobilised lipase from R. miehei yielding the product in 82-90% yield and up to 89% ee. The enantioselective ring-opening of the epoxide using different amines has been developed in high yields generating enantiomerically pure β-amino tertiary alcohol products. However, an undesired intramolecular migration of the acetyl group was observed during the epoxide opening with aliphatic primary amines resulting in prochiral triol products. To avoid such an intramolecular migration a TBS-protected derivative has been used to prepare the tertiary alcohol products with primary amines in good yields (43%-83%), without any loss of enantiomeric excess of the formed ‘pseudo’-enantiomer .(S)-(2-(hydroxymethyl)oxiran-2-yl)methyl acetate has the potential to generate a large diversity of compounds; this reagent was also used as the starting material to generate azetidines in high yields.
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:149378
Created by:
March, Andrea
Created:
13th January, 2012, 12:18:22
Last modified by:
March, Andrea
Last modified:
22nd February, 2012, 12:53:54

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.