In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Calcium waves in intact guinea pig gallbladder smooth muscle cells.

Balemba O, Heppner T, Bonev A, Nelson MT, Mawe G

American Journal of Physiology-Gastrointestinal Liver Physiology. 2006;291( 4):G717-27.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

Intracellular Ca(2+) waves and spontaneous transient depolarizations were investigated in gallbladder smooth muscle (GBSM) whole mount preparations with intact mucosal layer [full thickness (FT)] by laser confocal imaging of intracellular Ca(2+) and voltage recordings with microelectrodes, respectively. Spontaneous Ca(2+) waves arose most often near the center, but sometimes from the extremities, of GBSM cells. They propagated regeneratively by Ca(2+)-induced Ca(2+) release involving inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and were not affected by TTX and atropine (ATS). Spontaneous Ca(2+) waves and spontaneous transient depolarizations were more prevalent in FT than in isolated muscularis layer preparations and occurred with similar pattern in GBSM bundles. Ca(2+) waves were abolished by the Ins(1,4,5)P(3) receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C and by caffeine and cyclopiazonic acid. These events were reduced by voltage-dependent calcium channels (VDCCs) inhibitors diltiazem and nifedipine, by PLC inhibitor U-73122, and by thapsigargin and ryanodine. ACh, CCK, and carbachol augmented Ca(2+) waves and induced Ca(2+) flashes. The actions of these agonists were inhibited by U-73122. These results indicate that in GBSM, discharge and propagation of Ca(2+) waves depend on sarco(endo)plasmic reticulum (SR) Ca(2+) release via Ins(1,4,5)P(3) receptors, PLC activity, Ca(2+) influx via VDCCs, and SR Ca(2+) concentration. Neurohormonal enhancement of GBSM excitability involves PLC-dependent augmentation and synchronization of SR Ca(2+) release via Ins(1,4,5)P(3) receptors. Ca(2+) waves likely reflect the activity of a fundamental unit of spontaneous activity and play an important role in the excitability of GBSM.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Published date:
ISSN:
Place of publication:
United States
Volume:
291( 4)
Start page:
G717
End page:
27
Pagination:
G717-27
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d16349
Created:
30th August, 2009, 13:55:25
Last modified:
3rd March, 2010, 17:03:36

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.