In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Elementary purinergic Ca2+ transients evoked by nerve stimulation in rat urinary bladder smooth muscle.

Heppner T, Bonev A, Nelson MT

Journal of Physiology. 2005;564( Pt 1):201-12.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

The translation of nerve transmission to Ca2+ signals in urinary bladder smooth muscle (UBSM) is incompletely understood. Thus, we sought to characterize Ca2+ signals in strips of UBSM loaded with the Ca2+-sensitive fluorescent dye, fluo-4, using laser scanning confocal microscopy. Two types of Ca2+ signals occurred spontaneously and could be evoked with field stimulation: large, rapid, global Ca2+ transients termed 'global Ca2+ flashes', and much smaller, localized Ca2+ transients. Global Ca2+ flashes were inhibited by the L-type voltage-dependent Ca2+ channel (VDCC) inhibitor, diltiazem and with P2X receptor blockade. Simultaneous intracellular recordings and Ca2+ measurements indicated that these events are caused by Ca2+ influx through VDCCs during action potentials. Small, local Ca2+ transients occurred spontaneously, and their frequency could be elevated with field stimulation. Atropine, an inhibitor of muscarinic receptors, did not affect these local Ca2+ transients. However, the desensitizing P2X receptor agonist alpha,beta-methylene ATP, and the purinergic antagonist, suramin, effectively inhibited the local Ca2+ transients. The frequency of these 'purinergic Ca2+ transients' was increased about 7-fold by a 10 s stimulus train (1 Hz). The amplitude, duration at one-half amplitude and the spatial spread of the evoked purinergic Ca2+ transients were F/F(o) = 2.4 +/- 0.13, 111.7 +/- 9.3 ms and 14.0 +/- 1.0 microm2, respectively. Tetrodotoxin inhibited evoked purinergic Ca2+ transients, indicating that they were dependent on nerve fibre activation. Purinergic Ca2+ transients were not dependent on VDCC activity. Neither 2-APB, an inhibitor of inositol 1,4,5-triphosphate (Ins(1,4,5)P3) (IP3)-induced Ca2+ release, nor ryanodine inhibited the purinergic Ca2+ transients. We have identified two novel Ca2+ signals in rat UBSM. Large, rapid, global Ca2+ flashes that represent Ca2+ influx through VDCCs during action potentials, and local, purinergic Ca2+ transients that represent Ca2+ entry through P2X receptors. Our results indicate that purinergic Ca2+ transients evoked by release of ATP from nerve varicosities are elementary signals in the process of nerve-smooth muscle communication.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Published date:
Journal title:
ISSN:
Place of publication:
England
Volume:
564( Pt 1)
Start page:
201
End page:
12
Pagination:
201-12
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d16358
Created:
30th August, 2009, 13:55:38
Last modified:
3rd March, 2010, 17:04:07

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.