In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries.

PĂ©rez G, Bonev A, Patlak J, Nelson MT

Journal of General Physiology. 1999;113( 2):229-38.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

The relationship between Ca2+ release ("Ca2+ sparks") through ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum and KCa channels was examined in smooth muscle cells from rat cerebral arteries. Whole cell potassium currents at physiological membrane potentials (-40 mV) and intracellular Ca2+ were measured simultaneously, using the perforated patch clamp technique and a laser two-dimensional (x-y) scanning confocal microscope and the fluorescent Ca2+ indicator, fluo-3. Virtually all (96%) detectable Ca2+ sparks were associated with the activation of a spontaneous transient outward current (STOC) through KCa channels. A small number of sparks (5 of 128) were associated with currents smaller than 6 pA (mean amplitude, 4.7 pA, at -40 mV). Approximately 41% of STOCs occurred without a detectable Ca2+ spark. The amplitudes of the Ca2+ sparks correlated with the amplitudes of the STOCs (regression coefficient 0.8; P < 0.05). The half time of decay of Ca2+ sparks (56 ms) was longer than the associated STOCs (9 ms). The mean amplitude of the STOCs, which were associated with Ca2+ sparks, was 33 pA at -40 mV. The mean amplitude of the "sparkless" STOCs was smaller, 16 pA. The very significant increase in KCa channel open probability (>10(4)-fold) during a Ca2+ spark is consistent with local Ca2+ during a spark being in the order of 1-100 microM. Therefore, the increase in fractional fluorescence (F/Fo) measured during a Ca2+ spark (mean 2.04 F/Fo or approximately 310 nM Ca2+) appears to significantly underestimate the local Ca2+ that activates KCa channels. These results indicate that the majority of ryanodine receptors that cause Ca2+ sparks are functionally coupled to KCa channels in the surface membrane, providing direct support for the idea that Ca2+ sparks cause STOCs.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Published date:
ISSN:
Place of publication:
UNITED STATES
Volume:
113( 2)
Start page:
229
End page:
38
Pagination:
229-38
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d16408
Created:
30th August, 2009, 13:56:47
Last modified:
19th August, 2010, 10:47:50

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.