In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

A proteomic analysis of murine bone marrow and its response to ionizing radiation.

Chen C, Lorimore SA, Evans CA, Whetton A, Wright EG

Proteomics. 2005;.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

To characterize the mouse bone marrow tissue proteome and investigate the response to radiation damage we took bone marrow before and after 4-Gy gamma-irradiation from mouse strains (C57BL/6 and CBA/Ca) that differ in their short-term and long-term radiation responses and analyzed extracellular proteins by high-resolution 2-DE. Twenty proteins were identified from 71 protein spots in both C57BL/6 and CBA/Ca. We detected significant differences between control and irradiated bone marrow and between genotypes and identified many of the changed proteins by MS. In C57BL/6, 27 spots were significantly different between control and irradiated samples. In CBA/Ca, 18 spots showed significant changes following irradiation. Proteins such as serum albumin, apolipoprotein A-I, ferritin, haptoglobin (Hp) and alpha-1-antitrypsin were changed in irradiated bone marrow of both mouse strains, reflecting an ongoing acute-phase reaction. Several other proteins including serotransferrin, neutrophil collagenase, peroxiredoxin 2 and creatine kinase M chain were changed specifically in an individual mouse strain. The proteomic approach makes an important contribution to characterizing bone marrow proteome and investigating the tissue response of bone marrow to radiation, assists in identifying genotype-dependent responses and provides support for the importance of microenvironmental factors contributing to the overall response.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Published date:
Journal title:
ISSN:
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d30722
Created:
2nd September, 2009, 13:41:06
Last modified:
1st February, 2015, 19:03:45

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.