In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Neighbour discovery and distributed spatio-temporal cluster detection in pocket switched networks

Orlinski, Matthew

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

Pocket Switched Networks (PSNs) offer a means of infrastructureless inter-human communication by utilising Delay and Disruption Tolerant Networking (DTN) technology. However, creating PSNs involves solving challenges which were not encountered in the Deep Space Internet for which DTN technology was originally intended.End-to-end communication over multiple hops in PSNs is a product of short range opportunistic wireless communication between personal mobile wireless devices carried by humans. Opportunistic data delivery in PSNs is far less predictable than in the Deep Space Internet because human movement patterns are harder to predict than the orbital motion of satellites. Furthermore, PSNs require some scheme for efficient neighbour discovery in order to save energy and because mobile devices in PSNs may be unaware of when their next encounter will take place.This thesis offers novel solutions for neighbour discovery and opportunistic data delivery in PSNs that make practical use of dynamic inter-human encounter patterns.The first contribution is a novel neighbour discovery algorithm for PSNs called PISTONS which relies on a new inter-probe time calculation (IPC) and the bursty encounter patterns of humans to set the time between neighbour discovery scans. The IPC equations and PISTONS also give participants the ability to easily specify their required level of connectivity and energy saving with a single variable.This thesis also contains novel distributed spatio-temporal clustering and opportunistic data delivery algorithms for PSNs which can be used to deliver data over multiple hops. The spatio-temporal clustering algorimths are also used to analyse the social networks and transient groups which are formed when humans interact.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
147
Abstract:
Pocket Switched Networks (PSNs) offer a means of infrastructureless inter-human communication by utilising Delay and Disruption Tolerant Networking (DTN) technology. However, creating PSNs involves solving challenges which were not encountered in the Deep Space Internet for which DTN technology was originally intended.End-to-end communication over multiple hops in PSNs is a product of short range opportunistic wireless communication between personal mobile wireless devices carried by humans. Opportunistic data delivery in PSNs is far less predictable than in the Deep Space Internet because human movement patterns are harder to predict than the orbital motion of satellites. Furthermore, PSNs require some scheme for efficient neighbour discovery in order to save energy and because mobile devices in PSNs may be unaware of when their next encounter will take place.This thesis offers novel solutions for neighbour discovery and opportunistic data delivery in PSNs that make practical use of dynamic inter-human encounter patterns.The first contribution is a novel neighbour discovery algorithm for PSNs called PISTONS which relies on a new inter-probe time calculation (IPC) and the bursty encounter patterns of humans to set the time between neighbour discovery scans. The IPC equations and PISTONS also give participants the ability to easily specify their required level of connectivity and energy saving with a single variable.This thesis also contains novel distributed spatio-temporal clustering and opportunistic data delivery algorithms for PSNs which can be used to deliver data over multiple hops. The spatio-temporal clustering algorimths are also used to analyse the social networks and transient groups which are formed when humans interact.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:201375
Created by:
Orlinski, Matthew
Created:
12th July, 2013, 12:53:02
Last modified by:
Orlinski, Matthew
Last modified:
14th November, 2013, 13:20:03

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.