In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

Full-text held externally

University researcher(s)

Academic department(s)

A role for the melatonin-related receptor GPR50 in leptin signaling, adaptive thermogenesis, and torpor.

Bechtold, David A; Sidibe, Anissa; Saer, Ben R C; Li, Jian; Hand, Laura E; Ivanova, Elena A; Darras, Veerle M; Dam, Julie; Jockers, Ralf; Luckman, Simon M; Loudon, Andrew S I

Current biology : CB. 2012;22(1):70-7.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

The ability of mammals to maintain a constant body temperature has proven to be a profound evolutionary advantage, allowing members of this class to thrive in most environments on earth. Intriguingly, some mammals employ bouts of deep hypothermia (torpor) to cope with reduced food supply and harsh climates [1, 2]. During torpor, physiological processes such as respiration, cardiac function, and metabolic rate are severely depressed, yet the neural mechanisms that regulate torpor remain unclear [3]. Hypothalamic responses to energy signals, such as leptin, influence the expression of torpor [4-7]. We show that the orphan receptor GPR50 plays an important role in adaptive thermogenesis and torpor. Unlike wild-type mice, Gpr50(-/-) mice readily enter torpor in response to fasting and 2-deoxyglucose administration. Decreased thermogenesis in Gpr50(-/-) mice is not due to a deficit in brown adipose tissue, the principal site of nonshivering thermogenesis in mice [8]. GPR50 is highly expressed in the hypothalamus of several species, including man [9, 10]. In line with this, altered thermoregulation in Gpr50(-/-) mice is associated with attenuated responses to leptin and a suppression of thyrotropin-releasing hormone. Thus, our findings identify hypothalamic circuits involved in torpor and reveal GPR50 to be a novel component of adaptive thermogenesis in mammals.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Published date:
Journal title:
Abbreviated journal title:
ISSN:
Place of publication:
England
Volume:
22
Issue:
1
Pagination:
70-7
Digital Object Identifier:
10.1016/j.cub.2011.11.043
Pubmed Identifier:
22197240
Pii Identifier:
S0960-9822(11)01325-X
Access state:
Active

Institutional metadata

University researcher(s):
Academic department(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:210684
Created by:
Barnes, Louise
Created:
11th October, 2013, 12:29:25
Last modified by:
Barnes, Louise
Last modified:
11th October, 2013, 12:29:25

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.