In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    The Pharmacodynamics of Antifungal Agents Against Aspergillus

    Jeans, Adam Rupert

    [Thesis]. Manchester, UK: The University of Manchester; 2013.

    Access to files

    Abstract

    Background: Voriconazole is a first line agent for the treatment for invasive pulmonary aspergillosis. There are increasing reports of Aspergillus fumigatus isolates with reduced susceptibility to voriconazole. I investigated the pharmacodynamics of voriconazole against drug susceptible and drug resistant strains of Aspergillus fumigatus through the development of a novel dynamic in vitro model of the human alveolus. I then investigated whether combination therapy with voriconazole and anidulafungin would be beneficial in the treatment of infection with these isolates.Methods: An in vitro dynamic model of IPA was developed that enabled simulation of human-like voriconazole pharmacokinetics. Galactomannan was used as a biomarker. The pharmacodynamics of voriconazole against wild-type and three resistant strains of A. fumigatus were defined. The results were bridged to humans to provide decision support for setting breakpoints for voriconazole using Clinical Laboratory Standards Institute (CLSI) and European Committee of Antimicrobial Susceptibility Testing (EUCAST) methodology. The interaction of voriconazole and anidulafungin in an in vitro static model was described using the Greco model.Results: Isolates with higher MICs required higher area under the concentration time curve (AUCs) to achieve suppression of galactomannan. An AUC:MIC using CLSI and EUCAST methodology that achieved suppression of galactomannan was 55 and 32.1, respectively. A trough concentration:MIC using CLSI and EUCAST methodology that achieved suppression of galactomannan was 1.68 and 1, respectively. Potential CLSI breakpoints for voriconazole are: susceptible ≤ 0.5 mg/L; resistant > 1 mg/L. Potential EUCAST breakpoints for voriconazole are: susceptible ≤ 1 mg/L; resistant > 2 mg/L. Galactomannan concentrations were only marginally reduced by anidulafungin monotherapy in the static model. An additive effect between voriconazole and anidulafungin was apparent.Conclusions: Voriconazole resistance mechanisms can be overcome with higher drug exposures, but this may require concentrations likely to cause toxicity in humans. The addition of anidulafungin does not markedly alter the exposure-response relationship of voriconazole. A rise in serum galactomannan during combination therapy with voriconazole and anidulafungin should be interpreted as treatment failure and not attributed to a paradoxical reaction related to echinocandin treatment. The dynamic in vitro model is a useful tool to address many remaining questions related to treatment of invasive fungal infection.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Medicine
    Degree programme:
    MD Medicine (Inflammation & Repair)
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    150
    Abstract:
    Background: Voriconazole is a first line agent for the treatment for invasive pulmonary aspergillosis. There are increasing reports of Aspergillus fumigatus isolates with reduced susceptibility to voriconazole. I investigated the pharmacodynamics of voriconazole against drug susceptible and drug resistant strains of Aspergillus fumigatus through the development of a novel dynamic in vitro model of the human alveolus. I then investigated whether combination therapy with voriconazole and anidulafungin would be beneficial in the treatment of infection with these isolates.Methods: An in vitro dynamic model of IPA was developed that enabled simulation of human-like voriconazole pharmacokinetics. Galactomannan was used as a biomarker. The pharmacodynamics of voriconazole against wild-type and three resistant strains of A. fumigatus were defined. The results were bridged to humans to provide decision support for setting breakpoints for voriconazole using Clinical Laboratory Standards Institute (CLSI) and European Committee of Antimicrobial Susceptibility Testing (EUCAST) methodology. The interaction of voriconazole and anidulafungin in an in vitro static model was described using the Greco model.Results: Isolates with higher MICs required higher area under the concentration time curve (AUCs) to achieve suppression of galactomannan. An AUC:MIC using CLSI and EUCAST methodology that achieved suppression of galactomannan was 55 and 32.1, respectively. A trough concentration:MIC using CLSI and EUCAST methodology that achieved suppression of galactomannan was 1.68 and 1, respectively. Potential CLSI breakpoints for voriconazole are: susceptible ≤ 0.5 mg/L; resistant > 1 mg/L. Potential EUCAST breakpoints for voriconazole are: susceptible ≤ 1 mg/L; resistant > 2 mg/L. Galactomannan concentrations were only marginally reduced by anidulafungin monotherapy in the static model. An additive effect between voriconazole and anidulafungin was apparent.Conclusions: Voriconazole resistance mechanisms can be overcome with higher drug exposures, but this may require concentrations likely to cause toxicity in humans. The addition of anidulafungin does not markedly alter the exposure-response relationship of voriconazole. A rise in serum galactomannan during combination therapy with voriconazole and anidulafungin should be interpreted as treatment failure and not attributed to a paradoxical reaction related to echinocandin treatment. The dynamic in vitro model is a useful tool to address many remaining questions related to treatment of invasive fungal infection.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:212715
    Created by:
    Jeans, Adam
    Created:
    10th November, 2013, 18:13:53
    Last modified by:
    Jeans, Adam
    Last modified:
    22nd November, 2013, 12:35:43

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.